COURSE CONTENT

Master of Soil Science (Based on the 2020 Curriculum)

DEPARTMENT OF SOIL SCIENCE AND LAND RESOURCE IPB UNIVERSITY

2024

Contents

SEMESTER 1	
TNH1513: Soil Geography	
TNH1521: Advanced Soil Agro-Eco Chemistry	
TNH1631: Advanced Soil Physics	7
TNH1641: Advanced Soil Biology	10
TNH1602: Land Resource Management	13
SEMESTER 2	16
TNH1601: Research Methodology	
TNH1511: Soil Processes	20
TNH1612: Land Evaluation	25
TNH1632: Advanced Water and Soil Conservation	29
TNH1642: Advanced Soil Ecology	
TNH1522: Advanced Soil Fertility	
SEMESTER 3	47
TNH1515: Land Use Systems	
	F 4
Thu 11512: Soil Minorpland	
TNH 1512: Soil Mineralogy	
INH 1514: Remediation Technology and Ameliorant Materials	
PWL1652: Geographic information Systems	
PWL 1653: Techniques in Geographic Information	
PWL1603: Geospatial Techniques	
TNU 1651: Remote Sensing and Ground-Dased Sensors	
TNH 1633: Econydrology and Sustainable water Resource Management	/3
TNH 1501: Land Degradation and Renabilitation	
TNH 1541: Agricultural waste Composing	81
TNH 1523: Ferulizer Technology and Ferulization	85
TNH 1621: Nutrient Movement in Plant-Soil System	
TNH 1605: Precision Farming 4.0	
TNH1591: Ploposal	
DDC1001. Thesis Cominer	101
PPS1691: Thesis Seminar	103
PPS1692. Scientific Publications at National Level	105
PPS1096. Proceedings of International Conference	10/
TNUL1001: Thesis Even	
ואם ואפט: Inesis	

SEMESTER 1

TNH1511: Soil Geography

A. Module identity

1	Course Name	Soil Geography
2	Course Code	TNH1511
3	Credit	2(2-0)
4	Semester	1
5	Pre-requisite	-
6	Coordinator	Dr. Ir. Dyah Tjahyandari Suryaningtyas, MApplSc.
7	Lecturers	Prof. Dr. Ir. Budi Mulyanto, MSc.; Dr. Ir. Darmawan, MSc.
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: Master of Soil Science (MSS)
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit		Contact		Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			
2		2						2

 $^{\ast})$ Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To describe the relationship between soil distribution and characteristics and their utilization in Indonesia.
- 2. To utilise soil geography in surveys, land evaluation and land use planning.
- 3. To establish inventory of soil characteristics according to their geographical location.

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to recognize soil	Direct learning and	Examination
	types and their characteristics in	discussion	
	relation to the general agricultural		
	cultivation patterns in Indonesia.		

2.	Students are able to understand the role of parent materials on soil characteristics.	Direct learning and discussion	Examination
3.	Students are able to understand the role of climate on soil characteristics.	Direct learning and discussion	Examination
4.	Students are able to understand the relationship between regional shape and land slope.	Direct learning and discussion	Examination
5.	Students are able to distinguish mainlands in Indonesia, recognize its characteristics, and understand their distribution in Indonesia.	Direct learning and discussion	Examination
6.	Students are able to explain geological units, parent materials and soil types	Presentation and discussion	Examination
7.	Students are able to differentiate soils, soil classifications and soil maps.	Direct learning and discussion	Examination
8.	Students are able to identify land spatial data throughout Indonesia.	Direct learning and discussion	Assignment/Project; Examination
9.	Students are able to pinpoint the characteristics and land physiography distribution in lowlands, hills and volcans.	Direct learning and discussion	Assignment/Project; Examination
10.	Students are able to characterize peat and organosols/histosol soils and their distribution, as well as identify the use of peat land in Indonesia.	Direct learning and discussion	Assignment/Project; Examination

Торіс	Number of Week(s)	Contact Hours
Introduction: land and cultural distribution in Indonesia	2	4
Soil Forming Factors: Climate	1	2
Soil Forming Factors: Topography	2	4
Geology, Climate and Soil	2	4
Distribution of Parent Material – Soil Type	2	4
Soil Individuals, Classifications, and Maps	2	4
Land Spatial Data Throughout Indonesia	1	2
Physiography of soils in lowlands, hills and volcans	1	2
Peat and Organosol/Histosol: Prospects and Challenges	1	2

F. Course assessment

No	Assessment Type	9	Schedule (Week Due)	Proportion to the Final Mark
	IPB University	Department of Soil Science and Land Resource		Page 2

1	Mid-term examination	Week 8	40%
2	Final examination	Week 16	40%
3	Assignments		20%

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Bohn, H.L., B.L. McNeal, and G.A. O'Connor. 2001. Soil chemistry 3rd Edition. John Wiley and Sons
- 2. Tan, K.H. 2008. Soil in The Humic Tropics and Monsoon Region of Indonesia. CRC Press
- 3. Tan, K.H. 2011. Principles of Soil Chemistry 4th Edition. CRC Press

Journal articles:

- a) Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Adv. Agron., 24: 29–96
- b) Selected articles (to be adapted in yearly basis)

Others:

- Brady, M.A. 1997. Dynamics of Coastal Peat Deposits in Sumatra, Indonesia. Dissertation. The University of British Columbia
- Fisher, W.L., Brown Jr., L.F., Scott, A.J., McGowen, J.H. 1969. Delta Systems in The Explanation for Oil and Gas. Bureau of Economic Geology, The University of Texas at Austin. Austin, Texas
- Melling, L. Joo, G.K, Uyo, L.J. Sayok, A. Hatano, R. 2007. Biophysical CharacterisUcs of Tropical Peatland. Malaysian Soil Science Conference. Mukah, Sarawak
- Mohr, E.C.J. 1938. The Soils of Equatorial Regions with Special Reference to The Netherlands East Indies. Ann Arbor, Michigan
- Paramananthan, S., 1998. Malaysian Soil Taxonomy Second Approximation. Mal. Soc. Soil Science and Param Agriculture Soil Surveys (M) Sdn. Bhd., Serdang, Selangor

TNH1521: Advanced Soil Agro-Eco Chemistry

A. Module identity

1	Course Name	Advanced Soil Agro-Eco Chemistry
2	Course Code	TNH1521
3	Credit	2(2-0)
4	Semester	1
5	Pre-requisite	-
6	Coordinator	Dr. Ir. Untung Sudadi, MSc.
7	Lecturers	Prof. Dr. Ir. Arief Hartono, MScAgr.; Dr. Ir. Syaiful Anwar, MSc.
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit		Contact		Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			
2		2						2

*) Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To explain the chemical properties of soil and its correlation with the soils' mineralogical, physical and biological properties and how it affects soil chemical fertility and the environment.
- 2. To explain the factors that influence the temporal and spatial dynamics of soil chemical properties.
- 3. To explain amelioration and fertilization processes and how it influences soil chemical properties dynamics.

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to demonstrate	Lecture and discussion	Examination
	the importance of developing ideas		
	and instrumentation in soil		
	chemistry, the concepts and		
	definitions of Agro – Eco soil		
	chemistry and basic principles of		
	soil chemistry.		
2.	Students are able to evaluate the	Lecture and discussion	Examination; Assignment
	composition and electrochemical		
	potential of soil.		

3.	Students are able to evaluate solid, gas and liquid phases of soils.	Lecture and discussion	Examination
4.	Students are able to describe soil reaction and mineral stability curves.	Lecture and discussion	Examination
5.	Students are able to explain organic soil colloids.	Lecture and discussion	Examination; Assignment
6.	Students are able to describe inorganic soil colloids.	Lecture and discussion	Examination
7.	Students are able to define soil solution.	Lecture and discussion	Examination
8.	Students are able to explain soil cation and anion exchange reactions.	Lecture and discussion	Examination; Assignment
9.	Students are able to characterize soil ion absorption – release reaction.	Lecture and discussion	Examination
10.	Students are able to evaluate soil sequestration reaction	Lecture and discussion	Examination; Assignment
11.	Students are able to describe the chemical kinetics of soil/sediment - water systems.	Lecture and discussion	Examination
12.	Students are able to explain the chemical reactions occurring during soil formation process.	Lecture and discussion	Examination
13.	Students are able to define chemical interactions between soil, organic matter, and soil contaminants.	Lecture and discussion	Examination

Торіс	Number of Week(s)	Contact Hours
Innovation and Instrument Evolution in Soil Chemistry; Concepts	1	2
and Definitions of Agro – Eco Soil Chemistry; Basic Principles of		
Soil Chemistry: Review		
Soil Electrochemical Properties, Composition, Potentials, Factors	1	2
and Dynamics		
Solid, Gas, Solution Phases of Soil	1	2
Soil Reaction; pH and Soil Mineral Stability to Weathering Curve	1	2
Organic Soil Colloids	1	2
Inorganic Soil Colloids, Soil – Clay Colloid (Constant charge –	1	2
isomorphic substitution reactions and pH – dependent charge –		
protonation – deprotonation reactions), XRD graphs of Amorphous		
or Para crystalline and Microcrystalline Soil		
Soil – Clay Colloid Surface Chemistry (Outer sphere, Inner sphere,	1	2
precipitation, Co – precipitation, Occlusion) and determining		
factors		
Soil Solution Chemistry (Minerals, Salts)	1	2
Soil Cation – Anion Exchange Reaction	1	2

Ion Sorption – Desorption Reaction in Soil	1	2
Non-Specific Adsorption Reaction (Electrostatic), Specific	1	2
Adsorption Reactions (Chemisorption, Ligand Exchange)		
Soil/Sediment - Water Reaction Kinetics; Chemical Equilibrium,	1	2
Kinetics and Thermodynamics of Soil Chemical Reactions; Rate		
Laws		
Soil Mineral Weathering, Chemical Reaction Rate during Soil	1	2
Formation		
Complex and Chelation Reactions; Soil – Organic Compound	1	2
Interactions; Organic – Metal Complex Reactions; Organic – Clay		
Complex Compounds; Metal Chelate Stability Diagram; Complex		
Formation, Soil Fertility and Clay Mobility		

F. Course assessment

No	Assessment Type	Schedule	Proportion to
		(Week Due)	the Final Mark
1	Mid Term Examination	Week 7	35%
2.	Final Examination	Week 14	35%
3.	Journal Review		30%

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Tan, K.H. 2011. Principles of Soil Chemistry 4th Edition. CRC Press. USA
- 2. Evangelou V.P. 1998. Environmental Soil and Water Chemistry: Principles and Applications. John Wiley & Sons, Inc
- 3. Conklin Jr., A.R. 2014. Introduction to Soil Chemistry: Analysis and Instrumentation. 2nd Edition. John Wiley and Sons, Inc
- 4. Bleam W. 2017. Soil and Environmental Chemistry. 2nd Edition. Elsevier

Journal articles:

a) Selected articles (to be adapted in yearly basis)

TNH1631: Advanced Soil Physics

A. Module identity

1	Course Name	Advanced Soil Physics
2	Course Code	TNH1631
3	Credit	3(3-0)
4	Semester	2
5	Pre-requisite	-
6	Coordinator	Dr. Ir. Dwi Putro Tejo Baskoro, MSc.
7	Lecturers	Dr. Ir. Enni Dwi Wahjunie, MSi, Dr. Ir. Latif Mahir Rahman, MSc
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit	Contact			Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			
3		3						3

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To understand and master the principles of soil physics and be able to integrate these principles in sustainable soil and water resource management.
- 2. To analyse and solve land resource management problems using principles of soil physics.

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to explain and	Lecture and Case Study	Question and Answer
	develop the concept and scope of		
	soil physics to solve agricultural		
	problems.		
2.	Students are able to define	Lecture and Case Study	Question and Answer
	groundwater, water potential,		
	hydraulic conductance, Darcy's		
	equation, and Laplace's equation.		
3.	Students are able to describe the	Lecture and Case Study	Question and Answer
	concept of groundwater movement,		

	both saturated and unsaturated, and expand its application		
4.	Students are able to recognize and apply groundwater movement modelling.	Lecture and Case Study	Question and Answer
5.	Students are able to demonstrate their understanding in internal redistribution, water movement profile in soil, internal hysteresis and internal redistribution.	Lecture and Case Study	Question and Answer
6.	Students are able to describe water uptake by plant roots and its models, hydraulic properties of plant roots, and water movement in plants.	Lecture and Case Study	Question and Answer
7.	Students are able to explain and improve gas and heat movement concepts in soil.	Lecture and Case Study	Question and Answer
8.	Students are knowledgeable and be able to expand the concepts of ground surface and underground water evaporation as well as salinization.	Lecture and Case Study	Question and Answer
9.	Students are able to explain soil compaction, soil consolidation and soil strength.	Lecture and Case Study	Question and Answer
10.	Students are able to describe and refine the following concepts: drainage, changes in soil physical properties, and wetland soils physical behaviour.	Lecture and Case Study	Question and Answer
11.	Students are able to explain salt balance.	Lecture and Case Study	Quiz
12.	Students are able to define and develop the concepts of water and energy balance around plants	Lecture and Case Study	Question and Answer
13.	Students are able to formulate and resolve issues related to solute transport.	Lecture and Case Study	Project Report
14.	Students are able to explain the concept of spatial variation in soil physical properties.	Lecture and Case Study	Project Report, Project Presentation, Discussion

Торіс	Number of Week(s)	Contact Hours	
Scope of Soil Physics and the Relationship between Soil Physics	1	3	
and Agricultural Problems			
IPB University	irce	Page 8	

Groundwater: Water Potential and Groundwater composition; Hydraulic Conductance; Darcy's equation; Laplace's equation	1	3
Groundwater movement; Saturated and unsaturated conditions and their applications	1	3
Modelling Water Movement in Soil	1	3
Internal redistribution and drainage; Water Movement Profile in Soil; Hysteresis in internal redistribution	1	3
Water Uptake by Plant Roots; Hydraulic Properties of Plant Roots; Water Movement in Plants; Water Uptake Models	1	3
Gas and Heat Movement in Soil	1	3
Land Surface and Underground Water Evaporation; Salinization	1	3
Soil Compaction, Consolidation Strength	1	3
Drainage; Changes in Soil Physical Properties; Wetland Soil Physical Behaviour	1	3
Soil Salt Balance	1	3
Water and Energy Balance around Plants	1	3
Solute Transport: Solute Conservation Equation, Convection- Dispersion Equation, Solute Transport using Transfer Function	1	3
Model		
Spatial Variation Analysis in Soil Physical Properties	1	3

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		
2.	Final Examination		
3.	Assignment		
4.	Report		

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Baver, L.D., Gardner, W.H., and Gardner, W. R. 1972. Soil Physics. John Wiley & Sons, Inc
- 2. Hanks, R. J., and Ashcroft, G.L. 1986. Applied Soil Physics. Springer Verlag
- 3. Hillel, D. 1971. Soil and Water Physical Principle and Processes. Academic Press
- 4. Hillel, D. 1980. Fundamental of Soil Physics. Academic Press
- 5. Jury, W.A., Gardner, W.R., and Gardner, W. H. 2001. Soil Physics. 5th edition. John Wiley & Sons, Inc
- 6. Koorevaar, P., Menelik, G., and Dirksen, C. 1983. Elements of Soil Physics. Elsevier
- 7. Hillel, D. 1998. Environmental of Soil Physics. Academic Press

Journal articles:

a) Selected articles (to be adapted in yearly basis)

TNH1641: Advanced Soil Biology

A. Module identity

1	Course Name	Advanced Soil Biology
2	Course Code	TNH1641
3	Credit	3(2-1)
4	Semester	1
5	Pre-requisite	-
6	Coordinator	Dr. Rahayu Widyastuti, MSc
7	Lecturers	Prof. Dr. Ir. Dwi Andreas Santosa, MS; Dr. Ir. Gunawan
		Djajakirana, MSc
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit	Contact			Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			
		2*14*50'						
		=1400'						

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To explain and classify the anatomy and living requirements of soil organism.
- 2. To describe the carbon cycle through other processes such as mineralization, immobilization, emission, transformation and translocation in the form of BOT.
- 3. To define N cycle (symbiotic non-symbiotic fixation, ammonification, nitrification and denitrification) and other nutrients (secondary macro and micro) generated through mineralization, immobilization, loss, transformation, and translocation.

No	LO in Learning Domains		Teaching Strategies	Assessment Me	ethods
1.	Students are able	to understand the	Lecture, class	Test, Report	
	taxonomy and spe	ecial classification	discussion, practicum		
	of bacteria accord	ding to its function			
	IPB University	Department of Soil	Science and Land Resource		Page 10

	and habitat (aerobic-anaerobic; cellulolytic, lignolytic, proteolytic, autotroph-heterotroph), as well as their role in C and N cycles.		
2.	Students are able to classify fungi and actinomycetes, and describe special classification according to function (cellulolytic, lignolytic, proteolytic), fungal-plant symbiosis (mycorrhiza)	Lecture, class discussion, practicum	Test, Report
3.	Students are able to understand the taxonomy of Protozoa and algae and classify them according to their function (predator, parasite) and symbiotic relationship of algae with certain plants (BGA - Azola), Lichen	Lecture, class discussion, practicum	Test, Report
4.	Students are able to understand the role of microbial biomass, the difference between population and biomass, procedures for determining population and biomass using various method	Lecture, class discussion, practicum	Test, Report
5.	Students are able to recognize diverse soil microbes (cosmopolitan, true climax and marginal species), succession, interactions between microbes, interactions between microbes and meso or macrofauna.	Lecture, class discussion, practicum	Test, Report
6.	Students are able to understand the importance of C cycle, Photosynthesis-respiration, short cycle, long cycle, local cycle, global cycle, the organisms involved, C compounds that sustain life (hexoses: aldose, ketose, glucose, mannose, galactose, fructose, pentose}	Lecture, class discussion, practicum	Test, Report
7.	Students are able to understand the reasons for the N cycle, symbiotic- non-symbiotic fixation, nitrification, denitrification, short cycles, long cycles, local cycles, global cycles, the organisms involved, the composition of N compounds that are important for plants, the cycle P, K, mineralization, immobilization, washing	Lecture, class discussion, practicum	Test, Report

8.	Students are able to understand the life of earthworms, their living conditions, anatomy, reproductive system, taxonomy, benefits.	Lecture, class discussion, practicum, video	Test, Report
9.	Students are able to understand the life of ants and termites, their living conditions, food, caste structure, anatomy, taxonomy and role	Lecture, class discussion, practicum, video	Test, Report
10.	Students are able to understand the macro life of other arthropods (isopods, Diplopods, chilopod and arachnids), their living conditions, food, anatomy, taxonomy and role	Lecture, class discussion, practicum	Test, Report
11.	Students are able to understand the micro life of arthropods (springtail, Acari), the conditions its life, food, anatomy, taxonomy and role	Lecture, class discussion, practicum	Test, Report

Торіс	Number of Week(s)	Contact Hours
Introduction	1	
Bacteria	1	
Fungi and Actinomycetes	1	
Protozoa and Algae	1	
Microbial Density in Soil	1	
Soil Microbial Community	1	
Carbon Cycle	1	
Nitrogen Cycle and Other Nutrients	1	
Earthworms	1	
Termites and Ants	1	
Soil Macrofauna	1	
Soil Mesofauna	2	

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		30%
2.	Final Examination		30%
3.	Practicum		30%
4.	Assignment		10%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Alexander, M. 1977. Introduction to Soil Microbiology. John Wiley and Sons
- 2. Bardgett, R.D., Usher, M.B., and Hopkins, D.W. 2005. Biological Diversity and Function in Soil. Cambridge University Press
- 3. Borror, D.J., Triplehorn, C.A., and Johnson, N.F. 1989. An introduction to the Study of Insects. Saunders College Publisher
- 4. Dindal, D.L. 1990. Soil Biology Guide. John Wiley and Sons
- 5. Fenchel, T. and Blackburn, T.H. 1979. Bacteria and Mineral Cycling. Academic Press
- 6. Minnich, J. 1977. The Earthworm Books: How to Raise and Use Earthworms for Your Farm and Gardens. Rodale Press
- 7. Mukerji, K.G., Manoharachary C., and Singh, J. 2006. Microbial Activity in the Rhizosphere. Springer
- 8. Paul, E.A. and Clark, F.E. 1989. Soil Microbiology and Biochemistry. Academic Press
- 9. Rao, N. S. 2007. Mikroorganisme Tanah dan Pertumbuhan Tanaman. UI Press
- 10. Schinner, F., Öhlinger, R., Kandeler, E., and Margesin, R. 1996. Methods in Soil Biology. Springer-Verlag
- 11. Suhardjono, Y.R., Deharveng, L, and Bedos, A. 2012. Collembola (Ekor Pegas). Vegamedia
- 12. Sumawinata, B., Djajakirana, G., Suwardi, and Darmawan. 2014. Carbon Dynamic in Tropical Peatland Planted Forests: One Year Research Finding in Sumatra. IPB Press

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

- Wikipedia: The Carbon Cycle
- Earthworm dissection: hjps://youtu.be/FzAN9ErE6E8
- Darwin's Earthworms: hjps://youtu.be/nKeJj_aXeTw
- Reproductive System of Earthworm 512 1: hjps://youtu.be/J_f55aO_cu0
- Nutrient cycles AQA A Level Biology + Exam Questions Run Through: hjps://youtu.be/5wx5P9Y1tRI
- Nitrogen Cycle: A level biology AQA. Saprobionts, nitrogen-fixing, ammonification & nitrification: hjps://youtu.be/2ifo_UXJnS8
- Facts About Ants Secret Nature | Ant Documentary | Natural History Channel: hjps://youtu.be/tBQD0Zghwg8

TNH1602: Land Resource Management

A. Module identity

1	Course Name	Land Resource Management
2	Course Code	TNH1602
3	Credit	
4	Semester	
5	Pre-requisite	
6	Coordinator	
7	Lecturers	

8	Language	Indonesian Language
9	Program(s) in which the course is offered	Internal department: MSS
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit	Contact			Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To ...
- 2.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
А	Knowledge	1. Discourse	1. quiz scores
		2. Videos	2. Midterm scores: 10 Multiple
		3. Discussion	choice questions

E. Module contents

Торіс	Number of Week(s)	Contact Hours

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

•

SEMESTER 2

TNH1601: Research Methodology

A. Module identity

1	Course Name	Research Methodology
2	Course Code	TNH1601
3	Credit	3(3-0)
4	Semester	2
5	Pre-requisite	
6	Coordinator	Dr. Ir. Darmawan, MSc.
7	Lecturers	Dr. Ir. Iskandar; Dr. Ir. Lilik Tri Indriyati, MSc.
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit		Contact		Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To comprehend the philosophical foundations of education, scientific philosophy, ethics and morals in research, reasoning and logic.
- 2. To understand and understand the basis of research related to research topics (field of science), developments and problems (state of the art) that exist on a topic, research ideas based on problems, questions and/or specific phenomena and/or hypotheses that need to be answered proven by research, research objectives and designing valid research methods.
- 3. To design research and present it in a research proposal
- 4. To comprehend good research quality evaluation, requirements and procedures for publishing scientific papers, procedures for processing IPR registration

No	LO in Learning Domains	Teaching Strategies	Assessment Methods

1.	Students are able to explain what knowledge is, science, understand ethics and scientific morals	Lecture and discussion	Test, Report
2.	Students are able to explain the difference between reason and logic, what is meant by a scientist and its characteristics, the meaning of research and types of research, concepts scientific method	Lecture and discussion	Test, Report
3.	Students are able to understand how to choose problems as research material, differentiate between types of problems, how to formulate research titles and how to conduct preliminary studies.	Lecture and discussion	Test, Report
4.	Students are able to explain how to formulate problems in research, understand the importance of formulating basic assumptions, formulate hypotheses, understand Hypothetical causes are not proven	Lecture and discussion	Test, Report
5.	Students are able to understand how to choose and use good libraries, how to find good library sources, understand that not all published libraries are good and can be used, what are the procedures for writing libraries in the world, how to how to cite or quote, understand how to read and take good notes	Lecture and discussion	Test, Report
6.	Students are able to explain what is meant by research methodology, the differences between methods, procedures and techniques, understand the variety and development of research, understand historical research methods, their varieties, nature and characteristics.	Lecture and discussion	Test, Report
7.	Students are able to explain what is meant by research methodology, descriptive, nature and characteristics, varieties, experimental research methods, nature and characteristics, criteria, requirements, other relevant research methods, understanding procedures for preparing budgets, procedures for preparing work plans.	Lecture and discussion	Test, Report
8.	Students are able to explain what is meant by variables in research,	Lecture and discussion	Test, Report

	procedures for identifying and		
	procedures for identifying and		
	classifying variables, procedures for		
	defining variables in research,		
	recognizing various types of		
_	Students are able to understand the		Test Denert
9.	Students are able to understand the	Lecture and discussion	lest, Report
	Importance of selecting and		
	developing data collection tools,		
	procedures for preparing research		
	designs, determining samples,		
	sampling procedures, data		
40	collection and analysis.		T . D .
10.	Students are able to understand	Lecture and discussion	lest, Report
	now to make a research proposal,		
	starting from creating a title, writing		
	background, hypothesis, if		
	necessary, objectives, preparing a		
	budget and research schedule		
11.	Students are able to understand	Lecture and discussion	lest, Report
	how procedures for writing a		
	thesis/dissertation/scientific		
40	reports/articles for journals		T . D .
12.	Students are able to understand	Lecture and discussion	lest, Report
	now procedures in scientific		
	communication, preparation and		
	creation of materials good		
10	presentation		Test Demont
13.	Students are able to explain what is	Lecture and discussion	lest, Report
	meant by IPR, the purpose of		
	granting IPR, understanding the		
	types of IPR, granting IPR, scope of		
		Lastring and P	Test Demont
14.	Students are able to understand IPR,	Lecture and discussion	lest, Report
	there are bodies that organize it both		
	domestically and, in the world, be		
	able to explain now to find and		
	utilize patents whose protection		
	period has expired, know trends in		
	world IPR progress, and utilize IPR		
	tor research collaboration		
	opportunities.		

Торіс	Number of Week(s)	Contact Hours
What is Science? Knowledge, Scientific Ethics and Morals	1	
Scientists and Research: Reason, Logic, Characteristics,	1	
Categories, Framework		
Research Problem: Gap, Type, Formulation and Preliminary	1	
Study		
Problem Formulation: Assumptions and Hypothesis	1	

Citation: Library Utilization, Sources, Bibliography, Quotation, Reading and Note – taking techniques, Summary	1	
Methodology: Procedures, Types, Development, Historical Method (Characteristics, Data Source and Types)	1	
Descriptive Method (Characteristics and Types), Experimental Method (Characteristics and Requirements), and Other Research Methods (Qualitative, Budgeting, Workplan)	1	
Implementation: Research Variables	1	
Implementation: Data collection, Research Design, Sampling, Analysis	1	
Making a Research Proposal: Title, Problem, Background, Hypothesis, Literature Review, Objective, Budget and Time	1	
Scientific Writing	2	
Introduction to Intellectual Property Rights (IPR)	2	

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		40%
2.	Final Examination		40%
3.	Assignment		20%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Arikunto, S. 2002. Prosedur Penelitian: Suatu Pendekatan Praktek. Rineks Cipta
- 2. Day, R. A. 1988. How to Write and Publish a Scientific Paper. 3rd Edition. Oryx Press
- 3. Moore, N. 1995. How to Do Research. Translation by E. Suradikusumah. Penerbit ITB
- 4. Nasoetion, A. H. 2003. Pengantar ke Ilmu-ilmu Pertanian. PT Pustaka Litera AntarNusa
- 5. Nazir, M. 2003. Metode Penelitian. Ghalia Indonesia

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

- What are intellectual property rights? hjps://www.wto.org/english/tratop_e/trips_e/intel1_e.htm
- Inside WIPO. What is WIPO? hjps://www.wipo.int/about-wipo/en/
- Intellectual property hjps://en.wikipedia.org/wiki/Intellectual_property

TNH1511: Soil Processes

A. Module identity

1	Course Name	Soil Processes
2	Course Code	TNH1511
3	Credit	3(2-1)
4	Semester	2
5	Pre-requisite	
6	Coordinator	Dr. Ir. Suwardi, M.Agr
7	Lecturers	Dr. Ir. R.A. Dyah Tj. Suryaningtyas, MAppl.Sc
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit		Contact		Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To explain the physical, chemical and biological weathering processes of minerals and rocks into soil parent material as well as the processes of organic soil formation.
- 2. To explain the processes of pedogenesis from soil parent material to soil which are grouped into 4 pedogenesis processes, namely: addition, loss, transformation and translocation of material.
- 3. To understand the basics of soil chemical processes such as chemical equilibrium, solubility, oxidation-reduction, acid-base, chelation, dispersion and others that underlie the processes that occur in the soil.

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
Α.	Lecture		
1.	Students are able to understand the processes of soil formation from mineral and organic soil and the inherited properties	Lecture and Class Discussion	Written Test

2.	Students are able to explain the	Lecture and Class	Written Test
	processes of pedogenesis	Discussion	
3.	Students are able to explain the	Lecture and Class	Written Test
	factors that form soil	Discussion	
4.	Students are able to explain	Lecture and Class	Written Test
	processes in the soil	Discussion	
5.	Students are able to explain the	Lecture and Class	Written Test
	three phases of soil and their	Discussion	
	functions in the soil		
6.	Students are able to explain the	Lecture and Class	written lest
	in Indonesia	DISCUSSION	
7	Students are able to understand and	Lecture and Class	Written Test
7.	explain soil colloids their	Discussion	Witten lest
	characteristics and their	Discussion	
	relationship to the properties and		
	characteristics of soil		
8.	Students are able to understand and	Lecture and Class	Written Test
	explain the development of soil	Discussion	
	horizons		
9.	Students are able to understand and	Lecture and Class	Written Test
	explain the process and results of	Discussion	
	weathering		
10.	Students are able to understand and	Lecture and Class	Written Test
	explain the characteristics of	Discussion	
	Andisol, Spodosol,		
11	Students are able to understand and	Lecture and Class	Written Test
11.	explain the pedogenesis of paddy	Discussion	Witten lest
	fields, soil chelates	Discussion	
12.	Students are able to understand and	Lecture and Class	Written Test
	explain soil which develops from	Discussion	
	organic material		
В.	Practicum		
1.	Students are able to understand and	Practicum and Group	Report, Progress Report
	explain the processes of mineral and	Discussion	
	rock weathering that occur in soil as		
	well as the processes of organic soil		
	tormation	Dreatiours and C	Demont Draggers Demon
2.	Students are able to explain the	Practicum and Group	Report, Progress Report
	physical weathering of minerals and		
3	Students are able to evolain	Practicum and Group	Report Progress Report
0.	chemical weathering	Discussion	
4.	Students are able to explain	Practicum and Group	Report, Progress Report
	biological weathering	Discussion	
5.	Students are able to explain the	Practicum and Group	Report, Progress Report
	processes of adding materials to the	Discussion	
	soil		

6.	Students are able to explain the	Practicum and Group	Report, Progress Report
	processes of loss of materials from	Discussion	
	the soil		
7.	Students are able to explain	Practicum and Group	Report, Progress Report
	translocation processes in the soil	Discussion	
8.	Students are able to understand and	Practicum and Group	Report, Progress Report
	explain the factors that form soil, the	Discussion	
	processes that form soil in an		
	independent profile.		
9.	Students are able to understand and	Practicum and Group	Report, Progress Report
	explain the solubility of organic	Discussion	
	compounds		
10.	Students are able to describe,	Practicum and Group	Report, Progress Report
	understand and explain the	Discussion	
	characteristics of Andisol		
11.	Students are able to understand and	Practicum and Group	Report, Progress Report
	explain soil dispersion and	Discussion	
	flocculation		

Topic		Number of Week(s)	Contact Hours		
	LECTURES				
Introd	uction:	1			
•	Soil Formation from Minerals and Rocks				
•	Diagenesis vs Pedogenesis Process				
Pedog	enesis Process:	1			
•	Combining Organic Materials with Minerals				
•	Weathering of Minerals and Rocks				
•	Secondary Mineral Formation				
•	Movement of Materials				
•	Reorganization of Soil Matrix				
Soil Fo	ormation Factors:	1			
•	Weathering of Minerals and Rocks				
•	Erosion				
•	Water, Wind and Temperature				
•	Gravity				
•	Chemical Interactions				
•	Living Organism				
•	Pressure Difference				
•	Parent Material, Climate, Topography and Time				
Soil Pr	ocesses:	1			
•	Eluviation and Illuviation				
•	Leaching				
•	Enrichment,				
•	Surface Erosion				
•	Cumulation				
Decalcification					
•	Salinization and Desalinization				
•	Alkalinization				
	IPB University Department of Soil Science and Land Resou	rce	Page 22		

Lessivage			
Soil Processes:	1		
Podzolization			
Desilication (feralitization, ferritization,			
allitization, laterization, latosolization)			
Decomposition-synthesis			
Melanization-leucination			
Littering- humification			
Paludization			
Ripening mineralization			
Braunification (brown)			
Bubification ferugination			
Oxidation and gleization			
Loosening and hardening			
Three Phases in Soil:	1		
Solid phase (minerals and organic matter	1		
including living organisms)			
 Liquid phase (water and putrients dissolved in it) 			
• das phase (e.g. oxygen which is important for root			
respiration)			
Soil Classification Development:	1		
What is land?	-		
Meaning of Classification			
• Thorp and Smith. 1949			
 Dudal and Soepraptohardio, 1955 			
• FAO -UNESCO, 1974			
 Soil Taxonomy, 1975 			
 National soil classification 			
Global Soil Map.			
Soil Colloids:	1		
• Types			
Characteristics			
Soil Characteristics			
Soil Horizon Formation	1		
Soil Weathering:	1		
• Types			
Factors			
Product			
Andisols and Spodosol:	1		
Characteristics			
Specific characteristics and processes			
Definition of micromorphology			
o identification methods			
1. Characteristics of paddy soil	1		
2. Oxidation-Reduction reactions:			
Definition			
Characteristics			
Examples of redox reactions.			
IPB University Department of Soil Science and Land Resou	ILCE	Page 23	

1. Organic soil:	1	
Influencing factors		
Characteristics		
2. Chelation		
Chelation soil science		
Chelating compounds and agents		
Chelation in organic soil		
PRACTICUM	·	
Introduction to mineral and rock weathering in soil	1	
Physical weathering of minerals and rocks: rock breaking,	1	
exfoliation processes		
Chemical weathering: oxidation, reduction, acid-base	1	
Biological weathering: the ability of plant roots, flora and	1	
fauna groups in the soil to decompose organic matter		
The processes of adding materials to the soil	1	
Processes of loss of material from the soil: erosion, leaching	1	
of nutrients, evapotranspiration, etc.		
Translocation processes in the soil: formation of albic,	1	
argillic, spodic horizons, etc.		
Soil Profile Construction:	2	
Processes		
 Factors and classifications of Horizons 		
Secondary data collection		
Solubility of Organic Compounds from Biomass	1	
Dispersion-flocculation	1	

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		30%
2.	Final Examination		30%
3.	Practicum		40%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- Buol, Stanley W.; Southard, Randal J.; Graham, Robert C.; McDaniel, Paul A. (2011). Soil genesis and classification (Sixth ed.). Hoboken, New Jersey: Wiley- Blackwell. ISBN 978-0-813-80769-0. Retrieved 26 September 2021.
- 2. David L. Rowell. Soil Science: Methods & Applications. Published in 1994.

- 3. Jenny, Hans (1994). Factors of soil formation: a system of quantitative pedology. New York, New York: Dover. ISBN 978-0-486-68128-3. Archived (PDF) from the original on 25 February 2013. Retrieved 26 September 2021.
- 4. Nyle C. Brady and Ray R. Weil. The Nature and Properties of Soils 15th Edition, Published in 2016
- 5. Paul, A. Soil Microbiology, Ecology, and Biochemistry. 4th Edition, Published in 2014
- 6. Stanley W. Buol, Randal J. Southard, Robert C. Graham, and Paul A. McDaniel. Soil Genesis and Classification. 6th Edition, Published in 2011
- 7. William F. Bleam. Soil and Environmental Chemistry. Published in 2016

Journal articles:

a) Selected articles (to be adapted in yearly basis)

TNH1612: Land Evaluation

A. Module identity

1	Course Name	Land Evaluation
2	Course Code	TNH1612
3	Credit	2(2-0)
4	Semester	2
5	Pre-requisite	
6	Coordinator	Dr. Ir. Darmawan, M.Sc
7	Lecturers	Prof. Dr. Ir. Widiatmaka, DAA; Dr. Ir. R.A. Dyah Tj.
		Suryaningtyas, MAppl.Sc
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Credit			Co	ntact		Self-study	Other	Total
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To explain the definition and basic principles of land evaluation and describe its scope and role in optimizing land resource utilization.
- 2. To identify the types and sources of data for land evaluation and explain the concepts and technical stages of data acquisition and procurement. This includes: 1) the concept of data procurement through survey approaches and thematic mapping specifically for land resources, primarily soil/land surveys and mapping, and 2) the stages of data acquisition from existing data and its analysis/interpretation for land evaluation.
- 3. To explain internationally developed and used land evaluation concepts, including land capability and land suitability assessment, and describe the implementation stages. Capable of identifying the concept of Land Use Types (LUT) in land suitability, conducting land suitability assessments according to LUT, explaining and applying the principles of parametric/mathematical model land suitability evaluation, and outlining the planning and development stages of criteria for commodity suitability.
- 4. Proficient in identifying land assessment approaches beyond land capability and suitability concepts, including The Fertility Capability Soil Classification System (FCC), Land Evaluation for Irrigation, and Critical Land and Degraded Land Classification.
- 5. To explain the extended uses of these various land evaluation concepts for regional and spatial planning, including Agro-ecological Zones (AEZ), Land Use Planning, Spatial Planning, and Land Reclamation concepts.

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to explain the	Lecture and Class	Written Test
	land evaluation and describe its	Discussion	
	scope and role in optimizing land		
	resource use.		
2.	Students are able to identify the	Lecture and Class	Written Test
	types and sources of data for land	Discussion	
	evaluation and describe the		
	concepts and technical stages of		
	data procurement and acquisition,		
	Including: 1) the concept of data		
	procurement through a thematic		
	specifically for land resources		
	primarily soil/land surveying and		
	mapping, and 2) the data acquisition		
	stage from existing data and its		
	analysis/interpretation for land		
	evaluation.		
3.	Students are able to understand	Lecture and Class	Written Test, Assignment
	survey implementation methods,	Discussion	
	including the role of the		
	implementing organization, from		
	initiation to data completion		

4.	Students are able to explain land	Lecture and Class	Written Test
	evaluation concepts that have been	Discussion	
	developed and used internationally.		
	including the concepts of land		
	capability assessment and land		
	suitability, and can explain the		
	stages of implementation. They are		
	able to detail the LUT concept in		
	land suitability, explain land		
	characteristics and plant		
	requirement criteria, and carry out		
	land suitability assessments		
	according to LUT.		
5.	Students are able to understand and	Lecture and Class	Written Test
	explain AEZ, FCC, land for irrigation,	Discussion	
	critical land, and reclamation.		
6.	Students are able to explain and	Lecture and Class	Written Test, Assignment
	implement the principles of	Discussion	
	parametric land suitability		
	evaluation and mathematical		
	models and can outline the planning		
	and stages of developing criteria for		
	the suitability of a commodity.		
7.	Students are able to explain and	Lecture and Class	Written Test
	understand land use cases	Discussion	
8.	Students are able to explain and	Lecture and Class	Written Test, Assignment
	understand spatial planning or	Discussion	
	regional planning cases		
9.	Students are able to communicate	Discussion	Discussion
	their independent observations		
	results on previously given		
	materials.		

Торіс	Number of Week(s)	Contact Hours
Introduction:	1	
Definition and Scope of Land Evaluation		
 Basic Principles of Land Evaluation: Direct and 		
Indirect		
Land Evaluation Data Source		
Land Resource Data:	1	
Land Unit Mapping versus Land Mapping, Survey Levels		
and Map Scale, Map Legend		
Collection of		
\circ supporting information for the Implementation		
of Land/Land Surveys and Mapping		
\circ existing land/land data that is directly used for		
land evaluation (role and acquisition method)		
Methods and Techniques for Carrying Out Land Resource	1	
Surveys and Mapping, Land Mapping Case:		
IPB University Department of Soil Science and Land Resource	ırce	Page 27

Aims and Objectives		
Preparation and Design		
Implementing Organization		
Land Suitability Evaluation: FAO Concepts and Principles (1).	1	
Land Utilization Types (LUT)		
FAO Land Suitability Evaluation (2). Land Characteristics vs	1	
Crop Requirements / Criteria		
FAO Land Suitability Evaluation (3). Case example of land	1	
suitability assessment		
Non-FAO Land Evaluation (1):	1	
Agro-ecological Zones (AEZ)		
The Fertility Capability Soil Classification System (FCC)		
Land Evaluation for Irrigation		
Critical Land		
Reclamation and Other Land Improvements		
Principles of Parametric Land Evaluation	1	
Computerized Land Evaluation (LECS, LESA etc.)	1	
Development of Criteria for the Suitability of a Commodity	1	
Land Evaluation in Land Use Management: Case Examples	1	
Land Evaluation in Spatial Planning/Regional Planning: Case Examples	1	

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		45%
2.	Final Examination		45%
3.	Assignment		10%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

•

TNH1632: Advanced Water and Soil Conservation

A. Module identity

1	Course Name	Advanced Water and Soil Conservation
2	Course Code	TNH1632
3	Credit	3(3-0)
4	Semester	2
5	Pre-requisite	
6	Coordinator	Dr. Ir. Enni Dwi Wahjunie, M.Si
7	Lecturers	Prof. Dr. Ir. Suria Darma Tarigan, M.Sc; Dr. Ir. Yayat Hidayat, M.Si; Dr.
		Sri Malahayati Yusuf., SP., M.Si.
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Credit		Contact			Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			
3		3*50'*14						
		= 2100'						

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To Understand and master the principles of Soil and Water Conservation and be able to apply them in preventing land degradation to achieve sustainable land use.
- 2. Be able to identify, analyse, and solve problems related to Soil and Water Conservation, including:
 - a. Factors affecting erosion
 - b. Tolerable erosion
 - c. Erosion hazard levels
 - d. Conservation agriculture planning
 - e. Application of Soil and Water Conservation techniques for erosion and sedimentation control
 - f. Prediction of peak flow rate and volume using the SCS Curve Number and Rational methods
 - g. Erosion prediction using USLE, MUSLE, SWAT methods
 - h. Performance, monitoring, and evaluation of watershed sustainability
 - i. Constraints and challenges in implementing Soil and Water Conservation
 - j. Regulations and legislation on Soil and Water Conservation

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion
	explain, and develop the concept of		
	Soil and Water Conservation (KTA) in		
	sustainable development.		
2.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion
	explain, and develop the processes		
	and forms of erosion, as well as their		
	impacts.		
3.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion
	explain, and develop the factors that		
	influence Tolerable Soil Loss (TSL)		
	and Erosion Hazard Level (TBE)		
4.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion,
	explain, and apply Conservation		Assignment
-	Agricultural Planning		
5.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion
	explain, and develop the concept of		
6	KIA lecillology	Lastura and Casa Study	Question and Answer Discussion
6.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion
	of debit and volume estimation as		
	well as pack surface flow using the		
	SCS Curve Number Method		
7	Students are able to understand	Lecture and Case Study	Question and Answer Discussion
/.	explain, and develop the concept of		Question and Answel, Discussion
	estimating surface flow discharge		
	and peak volume using the Rational		
	Method		
8.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion,
	explain, and develop the concepts		Assignment
	of estimating soil discharge and		
	erosion using the USLE, MUSLE, and		
	SWAT methods		
9.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion
	explain, and develop the concepts		
	of performance, monitoring, and		
	evaluating watershed sustainability.		
10.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion
	explain, and develop the concept of		
	obstacles and challenges to KTA		
	implementation		
11.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion
	explain, and develop the concept of		
10	KIA regulations and legislation		
12.	Students are able to understand,	Lecture and Case Study	Question and Answer, Discussion
	explain, and develop the concept of		

	KTA success in Indonesia and the world, as well as WOCAT		
13.	Students are able to understand, explain, and develop the concept of conservation agriculture	Lecture and Case Study	Question and Answer, Discussion
14.	Students are able to understand, explain, and develop the concept of using various erosion and peak river flow estimation models	Lecture and Case Study	Question and Answer, Discussion

Торіс	Number of Week(s)	Contact Hours
Uses and Scope	1	
KTA Perspective in Sustainable Development		
 Definition and Understanding of Soil and Water 		
Conservation (KTA)		
History of KTA Implementation in Indonesia and Around		
the World		
Process and Forms of Erosion	1	
Consequences and Impacts of Soil Erosion and		
Sedimentation		
Factors that influence soil erosion	1	
TSL (Tolerable Soil Loss)	1	
TBE (Erosion Hazard Level)		
Conservation Agriculture Planning		
Technologies in Soil and Water Conservation:	1	
Approach		
Civil – Mechanical Engineering		
 Agronomic and Vegetative Techniques 		
Water Harvesting Management		
Estimation of Discharge and Peak Volume of Surface Flow Using	1	
the SCS Curve Number Method		
Estimation of Surface Flow Discharge and Peak Volume Using	1	
the Rational Method		
Soil Discharge and Erosion Estimation using USLE, MUSLE, and	1	
SWAI		
The Relationship and Role of Soil and Water Conservation in	1	
watersned Management:		
Watershed Sustainability Performance		
Monitoring and Evaluating Watershed Sustainability		
Obstacles and Challenges in Soil and Water Conservation	1	
Soil and Water Conservation Regulations:	1	
History of Soil and Water Conservation Regulations		
(Indonesia and Worldwide)		
Soil and Water Conservation Laws and Regulations in		
Indonesia (Law No. 37/2014) and other related		
regulations		

٠	Successful Soil and Water Conservation practices in	1	
	Indonesia		
•	Successful Soil and Water Conservation Practices		
	around the world		
•	WOCAT		

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		25%
2.	Final Examination		25%
3.	Assignment and Project Base Learning		50%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Adams, W. M. 2001. Green Development. 2nd edition. Environment and sustainability in the Third World. Routledge, Taylor & Francis Group. London, New York.
- 2. Arsyad, S. 2010. Konservasi Tanah dan Air. Edisi kedua. IPB Press. Bogor.
- 3. Arsyad, S., I. Amien, T Sheng, and W. Moldenhauer (Editor). 1992. Conservation Policies for Sustainable Hillslope Farming. Soil and Water Conservation Society, Ankeny. IO.
- 4. Gittinger, J. P. 1982. Economic Analysis of Agricultural Projects. The John HopkinsUniv. Press, Baltimore and London.
- 5. Hudson, N. 1971. Soil Conservation. BT Basford limited, London.
- 6. Sanders, D., P. C. Huszar, S. Sombatpanit, and T. Enters. 1999. Incentives in Soil Conservation: From Theory to Practice. Oxford and IBH Publishing Co. PVT, Ltd. New Dehli

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

- Direktorat Bina Rehabilitasi Hutan dan Lahan. 2011. Manual Konservasi Tanah dan Air. Untuk Kegiatan Rehabilitasi Hutan dan Lahan. Ditjen. Bina Pengelolaan DAS dna Perhutanan Sosial, Kementerian Kehutanan, RI.
- Food and Fertilizer Technology Center for the Asian and Pasific Regon. 1995. Soil Conservation Handbook. Council of Agriculture, ROC – Taiwan Provincial Soil and Water Conservation Bereau – Chinese Soil and Water Conservation Society, ROC.
- Goldman, S. J., K. Jackson, and T. A. Bursztynsky. 1986. Erosion and Sediment Control Handbook. McGraw Hill Book C. New York.
- Gregersen, H. M., K. N. Brooks, J. A. Dixon, and L. S. Hamilton. 1988. Guidelines for economic appraisal of watershed management projects. FAO Conservation Guide 16. FAO of UN, Rome.
- Kartodihardjo, H., K. Murtilaksono, dan U. Sudadi. 2004. Institusi Pengelolaan Daerah Aliran Sungai. Konsep dan Pengantar ke Analisis Kebijakan. Fakultas Kehutanan, IPB.

TNH1642: Advanced Soil Ecology

A. Module identity

1	Course Name	Advanced Soil Ecology
2	Course Code	TNH1642
3	Credit	2(2-0)
4	Semester	2
5	Pre-requisite	
6	Coordinator	Dr. Dra. Rahayu Widyastuti, M.Sc.Agr
7	Lecturers	Prof. Dr. Ir. Dwi Andreas Santosa, M.S
8	Language	Indonesian Language
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Credit Contact		Self-study	Other	Total				
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			
2		2*14*50'						
		= 1400						

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To explain the relationship between abiotic factors and biotic factors in an ecosystem, and the use of biotechnology to overcome environmental problems.
- 2. To explain the relationship between producers and consumers (trophic levels), the main nutrient cycles (C, N, P, K, Ca, etc.), and the factors that control them.
- 3. To explain the role of the main types of soil organisms in Indonesia (earthworms, ants, and termites) and other organisms classified as secondary (macro and meso fauna).

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to:	Lecture and Class	Written Test, Assignment
		Discussion	
	 Understand the lecture 		
	rules, schedule, and exams.		

	 Know the percentage sources of the final mark. Identify the teaching lecturer and the lecture material provided. Explain the meaning of soil ecology and the relationship between abiotic and biotic factors. Understand land as one of the abiotic factors. 		
2.	 Students are able to: Explain the importance of the functions of soil water and air in influencing life in the soil. Understand the composition of soil solutions and air, as well as the structure of water molecules. 	Lecture and Class Discussion	Written Test, Assignment
3.	Students are able to generally understand the function of vegetation as primary producers, the concept of NPP, photosynthesis as the process of capturing solar energy, respiration as part of utilizing the products of photosynthesis for life, the potential of photosynthesis to reduce global warming, and future research directions.	Lecture, Class Discussion, Video	Written Test, Assignment
4.	Students are able to explain the concept of secondary production, heterotrophic respiration, procedures for determining microbial biomass, and future research in utilizing ecological concepts	Lecture and Class Discussion	Written Test, Assignment
5.	Students are able to explain the meaning of wetlands, understand the importance of wetland functions for the ecosystem, and utilize artificial wetlands	Lecture, Class Discussion, Video	Written Test, Assignment
6.	Students are able to explain the importance of earthworms for soil health (as decomposers, organic matter distributors, and bioturbation agents), the potential uses of	Lecture, Class Discussion, Video	Written Test, Assignment

	earthworms, and the dangers of		
7.	Students are able to explain the	Lecture, Class	Written Test, Assignment
	importance of termites and ants for	Discussion. Video	
	soil health (as organic matter	,	
	decomposers and bioturbation		
	agents), the potential use of ants as		
	biological controllers, the dangers of		
	ants as invasive species, the		
	dangers of termites as invasive		
	species, and the potential of		
	termites as GHG contributors		
8.	Students are able to explain the	Lecture, Class	Written Test, Assignment
	ecological roles and functions of	Discussion, Video	
	several important macro arthropods		
	that live in soil (such as predators,		
	nutrient sinks, and organic material		
	decomposers)		
9.	Students are able to explain the	Lecture and Class	Written Test, Assignment
	roles and ecological functions of	Discussion	
	several important micro arthropods		
	that live in the soil, specifically		
	Collembola (as predators and		
10	decomposers of organic matter)		
10.	Students are able to explain the	Lecture and Class	written lest, Assignment
	roles and ecological functions of	Discussion	
	that live in the soil, specifically Acari		
	(as predators and decomposers of		
	organic material)		
11.	Students are able to understand the	Lecture and Class	Written Test, Assignment
	reasons for the carbon cycle,	Discussion	
	including photosynthesis and		
	respiration, short and long cycles,		
	local and global cycles, the		
	organisms involved, the		
	composition of carbon compounds		
	important for life, and research on		
	BOT or carbon cycle dynamics.		
12.	Students are able to understand the	Lecture, Class	Written Test, Assignment
	reasons for the nitrogen cycle,	Discussion, Video	
	including symbiotic and non-		
	symbiotic fixation, nitrification,		
	denitrification, short and long		
	cycles, local and global cycles, the		
	organisms involved, the		
	composition of nitrogen compounds		
	important for plants, and research		
	dynamiae		
	uynamics		

13.	Students are able to understand the	Lecture and Class	Written Test, Assignment
	reasons for other macronutrient	Discussion	
	cycles outside of C and N, including		
	mineralization, immobilization,		
	leaching, short cycles, long cycles,		
	local cycles, global cycles, the		
	organisms involved, the		
	composition of nutrient compounds		
	important for plants, and research		
	on other nutrients or their cyclical		
	dynamics		
14.	students are able to understand the	Lecture and Class	Written Test, Assignment
	reasons for the existence of	Discussion	
	micronutrient cycles, including		
	mineralization, immobilization,		
	leaching, short cycles, long cycles,		
	local cycles, global cycles, the		
	organisms involved, the		
	composition of nutrient compounds		
	important for plants, and research		
	on micronutrients or their cycle		
	dynamics		

Торіс	Number of Week(s)	Contact Hours
Understanding Ecology	1	
Abiotic Factors: Soil		
Abiotic Factors: Groundwater, Soil Air	1	
Plants/Vegetation as Primary Producers	1	
Photosynthesis		
Respiration		
Secondary Production:	1	
Algae, other photosynthetic microbes		
Heterotrophic Respiration		
Determination of Microbial Biomass		
Wetland Ecology	1	
Wetlands		
Ecological function		
Worm Ecology	1	
Ecology of Ants and Termites	1	
Other Macrofauna	1	
• Isopods		
Diplopoda		
Chilopoda		
Arachnids		
Mesofauna 1: Colembola	1	
Mesofauna II: Acari and other meso fauna	1	
Carbon Cycle	1	
Nitrogen Cycle	1	
IPB University Department of Soil Science and Land Resource	urce	Page 36

Other Macro Element Cycles (S, P, Ca, Mg, K)	1	
Micro Element Cycle (Fe, Mn, Cu, Zn)	1	

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		40%
2.	Final Examination		40%
3.	Assignment		20%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Alexander, M. 1977. Introduction to Soil Microbiology. John Wiley and Son, New York. 467 pp
- 2. Coleman, DC and DA Crossley Jr. 1996. Fundamentals of Soil Ecology. Academic Press, San Diego. 205 pp
- 3. Killham, K. 1999. Soil Ecology. Cambridge University Press, Cambridge, 242 pp
- 4. Allen, MF. 1996. The Ecology of Mycorrhizae. Cambridge University Press, Cambridge, 184 pp
- 5. Davet, P. 2004. Microbial Ecology of the Soil and Plant Growth. Science Publisher Inc. Enfield, USA. 392 pp
- 6. Alexander, M. 1977. Introduction to Soil Microbiology. John Wiley and Son, New York. 467 pp
- 7. Edward, CA. 1998. The Earthworm Ecology. CRC Press, Boca Raton, 389 pp.
- 8. Satchell; JE. 1983. Earthworm Ecology, from Darwin to Vermiculture. Chapman and Hall.
- 9. Lee, KE. 1985. Earthworm: Their Ecology and Relationships with Soils and Landuse. CSIRO, Academic Press

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

- Ecosystems Part 1 Energy: <u>https://youtu.be/NVd9Ch44s_Y</u>
- Ecosystems Part 2 Nutrient Cycling: <u>https://youtu.be/eOfMmPGMqoA</u>
- Ecology Trophic Levels & Nutrient Cycles: <u>https://youtu.be/JtBFzOGi0wM</u>
- Fundamentals of Nutrient Management 2015: Nutrient Cycles: <u>https://youtu.be/4ndeonTT8tQ</u>
- Nitrogen and phosphorus cycles: Always recycle! | Crash Course ecology | Khan Academy: <u>https://youtu.be/6rwoktPmqpY</u>
- Exploring Earthworm Ecology: <u>https://youtu.be/q7Eznl12V_g</u>
- Termites The Inner Sanctum The Secrets of Nature: <u>https://youtu.be/DXbo5ubYS91</u>
- Facts About Ants Secret Nature | Ant Documentary | Natural History Channel: <u>https://youtu.be/tBQD0Zghwg8</u>
- The Importance of Wetlands: <u>https://youtu.be/5Z7D9sQAmMw</u>
- Wetland: Sponges of the Earth: <u>https://youtu.be/Ezm7S74WgwA</u>

TNH1522: Advanced Soil Fertility

A. Module identity

1	Course Name	Advanced Soil Fertility
2	Course Code	TNH1522
3	Credit	2(2-0)
4	Semester	2
5	Pre-requisite	
6	Coordinator	Dr. Ir. Budi Nugroho, M.Si
7	Lecturers	Dr. Ir. Heru B Pulunggono, M.Agr.Sc.; Prof. Dr. Ir. Arief Hartono, M.Sc
8	Language	Indonesian Language
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Credit			Contact		Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To develop logical, critical, systematic, and creative thinking through scientific research, creating designs, and preparing scientific conceptions of study results based on scientific rules, procedures, and ethics in the form of theses and scientific publications in the field of soil fertility and nutrient management.
- 2. To develop academic validation or studies in the field of soil fertility and nutrient management to solve relevant problems in society and industry.
- 3. To solve problems in the development of soil fertility science and nutrient management through exploratory or experimental studies of valid and reliable data and/or information.
- 4. To document, store, secure, and recover research data to ensure validity and prevent plagiarism.
- 5. To present the results of soil fertility characterization and inventory both textually and spatially in accordance with the latest technological developments.
- 6. To modify procedures for evaluating potential and soil fertility problems according to scientific principles.
- 7. To apply soil fertility inventory techniques, including activities in the field, greenhouse, and laboratory, according to scientific principles.
- 8. To study theories of eco-chemical, physical, and biological processes and characteristics of soil using a quantitative and spatial approach in inventorying the potential and problems of soil fertility and nutrient management.

9. To study theories of soil fertility and nutrient management for the productivity and sustainability of land resources.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to explain the	Lecture and Class	Mid Term Examination
	history of soil fertility science, the	Discussion	
	concept of soil fertility, and the		
	relationship between soil fertility		
	and soil-forming factors.		
2.	Students are able to explain the	Lecture and Class	Mid Term Examination
	relationship between genetic factors	Discussion	
	and plant growth, the relationship		
	between environmental factors and		
	plant growth, and models of the		
	relationship between growth factors		
	and growth		
3.	Students are able to explain the	Lecture and Class	Mid Term Examination
	nutrients needed by plants,	Discussion	
	including essential elements, macro		
	and micronutrients, primary and		
	secondary nutrients, mobile and		
	immobile nutrients in plants, as well		
	as the functions of nutrients such as		
	N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, B,		
	Cl, NI, and SI in plants		
4.	Students are able to explain the	Lecture and Class	Mid term Examination
	components of a dynamic soil	Discussion	
	the soil estion exchange soil lead		
	land CEC determination of CEC for		
	land and BS high and low activity		
	clay anion exchange huffering		
	capacity root CEC movement of		
	ions to the roots, and absorption of		
	ions by plants		
5.	Students are able to explain the	Lecture and Class	Mid Term Examination
	nitrogen (N) cycle, sources of N in	Discussion	
	soil. N fixation, soil N forms and		
	transformations, soil's ability to		
	provide N, loss of N from soil, the		
	role of denitrification in agriculture		
	and the environment, as well as the		
	availability of N and how to measure		
	it		
6.	Students are able to explain	Lecture and Class	Mid Term Examination
	phosphorus (P) issues, P content in	Discussion	
	soil, forms of P in soil and their		
	transformations, P cycling in soil,		
ST PERT		Colores and Lond Descenses	Darta 20

	loss of P, P adsorption reactions, factors influencing P retention, transformation of P fertilizer in the soil, measurement of intensity and capacity factors, P absorption equations, how to solve P-related problems, guano, and the understanding and distribution of deposits in Indonesia		
7.	Students are able to explain the general condition of potassium and its role in plants, soil potassium, the main source of potassium in the soil, the potassium cycle in the land- crop-livestock system, factors that influence potassium availability, as well as methods for determining potassium in blood	Lecture and Class Discussion	Mid Term Examination
8.	Students are able to explain: presence of calcium in soil; the function of calcium in plants; magnesium in soil; the function of magnesium in plants; the calcium and magnesium cycle; factors determining the availability of Ca and Mg; corrective approaches for Ca and Mg deficiencies: a) plant requirements, b) cation ratio, c) amelioration	Lecture and Class Discussion	Final Examination
9.	Students are able to explain: sources of sulfur in the soil; the sulfur cycle; inorganic sulfur in soil; organic sulfur in soil; properties of sulfur in soil; soil acidification; the function and levels of sulfur in plants; deficiency symptoms, toxicity, and nutrient interactions; the role of silicon (Si); forms of Si in soil; the main source of Si in soil; factors that influence Si levels in plants; the role of Si in metabolism; the beneficial influence of Si; Si- deficient soils; sources of Si fertilizer; Si fertilization; and factors influencing the concentration of extracted Si	Lecture and Class Discussion	Final Examination
10.	Students are able to explain: the meaning of land pollution; the determination and assessment of land pollution; nitrogen and	Lecture and Class Discussion	Final Examination

	phosphorus pollution; heavy metal		
	and microelement pollution;		
	pesticide pollution; as well as other		
	additional sources of pollution		
11.	Students are able to explain the	Lecture and Class	Final Examination
	meaning of acid soil: sources of soil	Discussion	
	acidity: classification of soil acidity:		
	causes of acidic soil: problems		
	associated with acid soil: how to		
	address problems in acid soil:		
	liming: liming materials: selection of		
	liming materials; lime reaction;		
	benefits of liming: factors		
	influencing lime requirements:		
	methods for determining lime		
	requirements: overliming: providing		
	organic materials: as well as		
	inundation/rice fields		
12	Students are able to explain the	Lecture and Class	Final Examination
	levels of microelements in soil.	Discussion	
	plants, and rocks: types of minerals		
	that contain microelements: the role		
	of microelements in plants: forms of		
	microelements in soil: as well as		
	factors that influence the availability		
	and movement of microelements.		
13.	Students can explain the role of soil	Lecture and Class	Final Examination
	fertility evaluation, soil fertility	Discussion	
	evaluation methods, general keys for		
	identifying symptoms of nutrient		
	deficiency, biological test methods.		
	soil test methods, interpretation of		
	soil test data, plant analysis		
	methods, as well as the		
	interpretation of plant analysis data		
14.	Students can explain the factors to	Lecture and Class	Final Examination
	consider when fertilizing, fertilized	Discussion	
	plants, fertilizers and their		
	classification, placement of		
	fertilizers, fertilizer selection.		
	fertilization recommendations.		
	calculation of fertilizer doses in the		
	greenhouse and in the field.		
	prescription methods, fertilization		
	efficiency, efforts to increase		
	fertilizer efficiency, as well as the		
	effectiveness of fertilizers		
L			

Topic		Number of Week(s)	Contact Hours
•	A Brief History of Soil Fertility	1	
•	The Concept of Soil Fertility		
	 Factors That Influence Soil Formation and 		
	Fertility		
Plant C	Growth and Growth Factors	1	
•	Genetic Factors and Plant Growth		
•	Environmental Factors and Plant Growth		
•	Model of the Relationship Between Growth Factors and		
Nutrio	Plant Growin	1	
Nutrie	nis Required by Plants	1	
•	Definition of Essential Elements		
•	Macro and Micronutrients		
•	Primary and Secondary Nutrients		
•	Mobile and Immobile Nutrients in Plants		
•	Functions of Nutrients N. P. K. Ca. Mg. S. Fe. Mn. Cu. Zn.		
	B, Cl, Ni, and Si in Plants		
Soil-Pl	ant Relationship	1	
•	Components of a Dynamic Soil System		
•	Ion Exchange in Soil		
•	Cation Exchange		
•	Soil Charge		
•	Soil CEC (Cation Exchange Capacity)		
•	Determination of Soil CEC and Base Saturation		
•	High and Low Activity Clays		
•	Anion Exchange		
•	Buffering Capacity		
•	Root CEC		
•	Ion Movement to Roots		
•	Ion Absorption by Plants		
Nitrog	en:	1	
	The Nitrogen Cycle		
	Sources of Nitrogen in Soil		
	Nitrogen Fixation		
	Forms and Transformations of Soil Nitrogen		
	Soil's Ability to Supply Nitrogen		
	Nitrogen Loss from Soil		
	The Bole of Denitrification in Agriculture and the		
-	Environment		
-	Nitrogen Availability and Methods of Measurement		
•	mangen Availability and methods of medsulement	1	

Phosphorus:	1	
Phoenhorus Issues		
Phosphorus Content in Soil		
 Filosphorus Content in Soil Forme of Decemberus in Soil and Their Transformations. 		
The Description of Cycle in Soil		
Phosphorus Loss		
Phosphorus Adsorption Reactions		
Eactors Affecting Phosphorus Patention		
Desphorus Fertilizer Transformations in Soil		
Measurement of Intensity and Capacity Eactors		
Pheasurement of intensity and capacity ractors Doesnhorus Sorntion Equations		
 Solutions to Phosphorus Problems 		
Guano: Definition and Distribution of Its Denosits in		
Indonesia		
Potassium:	1	
• General Conditions of Potassium and Its Role in Plants		
Soil Potassium		
Major Sources of Potassium in Soil		
• The Potassium Cycle in the Soil-Plant-Animal System		
Factors Affecting Potassium Availability		
Methods for Determining Potassium in Soil		
Calcium and Magnesium:	1	
Calcium in the Soil		
Function of Calcium (Ca) in Plants		
Magnesium in the Soil		
Function of Magnesium (Mg) in Plants		
Calcium and Magnesium Cycle		
Factors Determining the Availability of Ca and Mg		
Corrective Approaches to Ca and Mg Deficiencies: a)		
Plant Needs, b) Cation Ratio, c) Amelioration	-	
Supnur and Sucon:	1	
Sources of Sulphur in the Soil		
The Sulphur Cycle		
Inorganic Sulphur in the Soil		
Organic Sulphur in the Soil		
Properties of Sulphur in the Soil		
Soil Acidification		
Eurotion and Levels of Sulphur in Plants		
Symptoms of Deficiency, Toxicity, and Nutrient		
Interactions		
Role of Silicon (Si)		
Forms of Silicon in Soil		
Main Sources of Silicon in the Soil		
Factors Influencing Silicon Levels in Plants		
Role of Silicon in Metabolism		
Beneficial Effects of Silicon		
IPR Howersity Department of Soil Science and Land Re	esource	Page 43
Bogor Indonesia —		

•	Silicon-Deficient Soils		
•	Sources of Silicon Fertilizer		
•	Silicon Fertilization		
•	Factors Influencing the Concentration of Extracted Silicon		
Soil Po	llution:	1	
•	Understanding Soil Pollution		
•	Detection and Assessment of Soil Pollution		
•	Nitrogen and Phosphorus Pollution		
•	Heavy Metal Pollution and Microelements		
•	Pesticide Pollution		
•	Other Sources of Pollution		
Soil Ac	idity and Solutions:	1	
•	Definition of Acid Soil		
•	Sources of Soil Acidity		
•	Classification of Soil Acidity		
•	Causes of Acidic Soil		
•	Problems Associated with Acidic Soil		
•	Methods for Addressing Acid Soil Problems		
•	Calcification		
•	Liming Materials		
•	Selection of Liming Materials		
•	Lime Reaction		
•	Benefits of Liming		
•	Factors Influencing Lime Requirements		
•	Methods for Determining Lime Requirements		
•	Overliming		
•	Application of Organic Materials		
•	Flooding/Ponding		
Microe	lements:	1	
•	Microelements Levels in Soil Plants and Bocks		
•	Minerals Containing Microelements		
•	The Bole of Microelements in Plants		
•	Forms of Microelements in Soil		
•	Factors Influencing the Availability and Movement of		
_	Microelements		
Soil Fe	rtility Evaluation:	1	
•	The Role of Evaluating Soil Fertility		
•	Methods for Evaluating Soil Fertility		
•	General Guidelines for Identifying Symptoms of Nutrient		
	Deficiency		
•	Biological Testing Methods		
•	Soil Testing Methods		
•	Interpretation of Soil Test Data		
•	Plant Analysis Methods		
•	Interpretation of Plant Analysis Data		

Fertilization:	1	
 Considerations for Fertilizing 		
Fertilized Plants		
Fertilizers and Their Classification		
Placement of Fertilizer		
Selection of Fertilizers		
Fertilization Recommendations		
Calculating Fertilizer Doses in Greenhouses and Fields		
Prescription Methods		
Fertilization Efficiency		
Methods to Increase Fertilizer Efficiency		
Fertilizer Effectiveness		

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		35%
2.	Final Examination		35%
3.	Report		30%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Havlin, J. L., J. D. Beaton, S. L Tisdale, and W. L. Nelson. 1999. Soil Fertility and Fertilizers, An Introduction to Nutrient Management. 6th ed. Prentice-Hall, Inc., New Jersey.
- 2. Tisdale, S. L, W. L. Nelson, and J. D. Beaton. 1985. Soil Fertility and Fertilizers. 4th ed. MacMillan Publishing Company, New York.
- 3. Prasad, R and J. F. Power. Soil Fertility Management for Sustainable Agriculture. CRC Press, Boca Raton.
- 4. Sanchez, P. A. 1976. Properties and Management of Soil in the Tropics. John Wiley and Sons, New York.
- 5. Brady, N. C. 1990. The Nature and Properties of Soils. 10th ed. MacMillan Publishing Company, New York.
- 6. Mengel, K. and E. A. Kirkby. 1982. Principles of Plant Nutrition. 2nd ed. International Potash Institute, Bern.
- 7. Werterman, R. L. 1990. Soil Testing and Plant Analysis. 3rd ed. Soil Sci. Soc. Am., Inc., New York.
- 8. Andrew, C. S. and E. J. Kamprath. 1978. Mineral Nutrition of Legums in Tropical and Subtropical Soils. CSIRO Publ., Australia.
- 9. IRRI. 1965. The Mineral Nutrition of the Rice Plant. The Johns Hopkins, Baltimore.
- 10. Epstein, E and A. J. Bloom. 2003. Mineral Nutrition of Plants: Principles and Perspectives. Second Editions. Sinauer Associates, Inc. Publisher, Sunderland.

11. Ma, J. F. and E. Takahasi. 2002. Soil, Fertilizer, and Plant Silicon Research in Japan. Elsevier, Amsterdam. Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

• Leiwakabessy, F. M., U. M. Wahjudin, dan Suwarno. 2003. Kesuburan Tanah. Jurusan Tanah, Fakultas Pertanian, IPB.

SEMESTER 3

TNH1515: Land Use Systems

A. Module identity

1	Course Name	Land Use Systems
2	Course Code	TNH1515
3	Credit	2(2-0)
4	Semester	3
5	Pre-requisite	
6	Coordinator	Dr. Ir. Suwardi, M.Agr
7	Lecturers	Prof. Dr. Ir. Budi Mulyanto, MSc; Prof. Dr. Ir. Widiatmaka,
		DAA
8	Language	Indonesian
9	Program(s) in which the course	Internal department: MSS
	is offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-
		20%

B. Workloads (total contact hours and credits per semester)

Credit		Contact		Self-study	Other	Total		
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			
2								
*) Semester credit unit according to the Indonesian higher educational system								
1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit								
unit clas	unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester							

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To explain the concept and meaning of land use, including an understanding of land, landscapes, ecosystems, regions, and territories.
- 2. To explain the dimensions and value of land, various legal aspects related to land use planning, and the social functions of land.
- 3. To understand land as a basis for activity space and connectivity, consider land capability and suitability in land use, and comprehend the relationship between land use and spatial planning. This includes understanding various theories in land use planning (e.g., value, sector, distribution patterns, and horizontal-vertical considerations).
- 4. To understand land use in rural areas, urban areas, and special ecosystems (such as watersheds, karst regions, swamps, and ancient sites).

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to understand the	Lecture and Class	Written Test
	concept and meaning of land use,	Discussion	
	which includes planning, utilization,		
	and management of land for various		
	needs such as agriculture, housing,		
	industry, and environmental		
2	Conservation.	Lastura and Class	Writton Toot
Ζ.	Students are able to explain soil,	Lecture and Class	written lest
	radions and areas including	DISCUSSION	
	interdisciplinary analysis that		
	considers physical biological		
	social, economic, and		
	environmental aspects, in the		
	context of resource management		
	and sustainable development		
	planning		
3.	Students are able to explain	Lecture and Class	Written Test
	physical, economic, ecological,	Discussion	
	social, cultural, and legal aspects		
4.	Students are able to explain zoning	Lecture and Class	Written Test
	regulations, agrarian law, property	Discussion	
	rights, environmental regulations,		
	land use permits, and development		
F	policies.	Lastura and Class	Writton Toot
5.	bousing aconomic activities public	Discussion	whiteh lest
	spaces cultural diversity food	Discussion	
	security, and community		
	sustainability.		
6.	Students are able to explain land	Lecture and Class	Written Test
	allocation for agriculture,	Discussion	
	settlements, industry, forests,		
	conservation, infrastructure, and		
	green open spaces		
7.	Students are able to analyse soil	Lecture and Class	Written Test
	quality, topography, climate, water	Discussion	
	availability, accessibility,		
	environmental impact, and		
0	economic potential.	Locture and Class	Writton Tost
ö.	success are able to understand and	Discussion	vvniten lest
	various land uses such as	0190039001	
	agriculture, residential areas		
	industry, and conservation, to		
	achieve planned and sustainable		
	regional development.		

9.	Students are able to understand and explain land value theory, sector theory, spatial pattern theory, as well as horizontal and vertical theories in organizing land use within the context of regional development and management. Students are able to understand and explain land management for soil and water conservation, erosion control, flood prevention,	Lecture and Class Discussion Lecture and Class Discussion	Written Test Written Test
	sustainable agriculture development, settlement planning, industrial development, and the preservation of water ecosystem functions.		
11.	Students are able to understand and explain rural areas, including agriculture, forests, nature conservation, and rural settlements, as well as urban areas, including dense settlements, commercial zones, industrial areas, transportation networks, and green open spaces, to meet population needs and manage urban growth in a sustainable manner.	Lecture and Class Discussion	Written Test
12.	Students are able to understand and explain karst areas, which involve the protection of biodiversity and underground water resources, as well as mining areas, which require the rehabilitation of former mining land and sustainable management to reduce environmental and social impacts.	Lecture and Class Discussion	Written Test
13.	Students are able to understand and explain peat areas, which involve the protection of stored carbon and biodiversity, as well as swamp areas, including management for wet farming, nature conservation, and flood mitigation.	Lecture and Class Discussion	Written Test
14.	Students will able to understand and explain the importance of land use, including the integration of ecological, economic, social, and cultural aspects in land management, to ensure environmental sustainability and the	Lecture and Class Discussion	Written Test

preservation of ancient sites as part	
of human cultural heritage.	

Торіс	Number of Week(s)	Contact Hours
Introduction, Concept, and Understanding of Land Use	1	
Planning		
Utilization		
 Management of land for various needs: 		
 Agriculture 		
 Housing 		
 Industry 		
 Environmental conservation 		
Understanding land, landscapes, ecosystems, and regions	1	
Interdisciplinary analysis:		
 Physical aspects 		
 Biological aspects 		
 Social aspects 		
• Economic aspects		
 Environmental aspects 		
Resource management context		
Sustainable development planning context		
The Dimensions and Value of Land: Physical, Economic,	1	
Ecological, Social, Cultural, and Legal Aspects.		
Various Legal Aspects in Land Use Planning:	1	
Zoning Regulations		
Agrarian Laws		
Ownership Rights		
Environmental Regulations		
Land Use Permits		
Development Policies.		
The Social Functions of Land:	1	
Shelter		
Economic Activity		
Public Space		
Cultural Diversity		
Food Security		
Community Sustainability.		
The Land Use Balance:	1	
Land Allocation for Agriculture		
Settlement		
Industry		
Forests		
Conservation		
Infrastructure		
Green Open Spaces.		
Consideration of land capability and land suitability in land use	1	
planning:		
Analysis of soil quality		
IPB University Bogor Indonesia – Department of Soil Science and Land Resource	urce	Page 50

Topography		
Climate		
Water availability		
Accessibility		
Environmental impact		
Economic notential		
The relationship between land use and spatial planning involves:	1	
Spatial arrangement of various land uses, such as:		
o Agriculture		
 Residential areas 		
o Industry		
 Conservation 		
Achieving planned and sustainable regional development		
Land Use in Watershed Areas:	1	
Land management for soil and water conservation		
Erosion control		
Flood prevention		
Development of sustainable agriculture		
Planning for settlements		
Industrial development		
Preservation of water ecosystem functions		
	1	
Land Use in Rural and Urban Regions :	1 1	
 Land Use in Rural and Urban Regions : Rural Areas: 	1	
Land Use in Rural and Urban Regions :	1	
Land Use in Rural and Urban Regions :		
 Land Use in Rural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation 		
 Land Use in Rural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation Rural settlements 		
 Aural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation Rural settlements Urban Areas: 	1	
 Aural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation Rural settlements Urban Areas: Dense settlements 		
 Rural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation Rural settlements Urban Areas: Dense settlements Commercial areas 		
 Rural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation Rural settlements Urban Areas: Dense settlements Commercial areas Industrial areas 		
 Rural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation Rural settlements Urban Areas: Dense settlements Commercial areas Industrial areas Transportation networks 		
 Rural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation Rural settlements Urban Areas: Dense settlements Commercial areas Industrial areas Transportation networks Green open spaces 		
 Rural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation Rural settlements Urban Areas: Dense settlements Commercial areas Industrial areas Transportation networks Green open spaces 	1	
 Rural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation Rural settlements Urban Areas: Dense settlements Commercial areas Industrial areas Transportation networks Green open spaces 	1	
 Rural and Urban Regions : Rural Areas: 	1	
 Rural Areas: Agriculture Forests Nature conservation Rural settlements Urban Areas: Dense settlements Commercial areas Industrial areas Transportation networks Green open spaces Land Use in Karst Areas: Dense in Karst Areas: 	1	
Land Use in Rural and Urban Regions : • Rural Areas: • Agriculture • Forests • Nature conservation • Rural settlements • Urban Areas: • Dense settlements • Commercial areas • Industrial areas • Industrial areas • Transportation networks • Green open spaces Land Use in Karst Areas: • Protection of biodiversity • Protection of biodiversity	1	
Land Use in Rural and Urban Regions : • Rural Areas: • Agriculture • Forests • Nature conservation • Rural settlements • Urban Areas: • Dense settlements • Commercial areas • Industrial areas • Industrial areas • Transportation networks • Green open spaces Land Use in Karst Areas: • Protection of biodiversity • Preservation of underground water resources	1	
Land Use in Rural and Urban Regions : • Rural Areas: • Agriculture • Forests • Nature conservation • Rural settlements • Urban Areas: • Dense settlements • Commercial areas • Industrial areas • Industrial areas • Transportation networks • Green open spaces Land Use in Karst Areas: • Protection of biodiversity • Preservation of underground water resources Land Use in Mining Areas:	1	
Land Use in Rural and Urban Regions : • Rural Areas: • Agriculture • Forests • Nature conservation • Rural settlements • Urban Areas: • Dense settlements • Commercial areas • Industrial areas • Industrial areas • Transportation networks • Green open spaces Land Use in Karst Areas: • Protection of biodiversity • Preservation of underground water resources Land Use in Mining Areas:	1	
 Land Use in Rural and Urban Regions : Rural Areas: Agriculture Forests Nature conservation Rural settlements Urban Areas: Dense settlements Urban Areas: Commercial areas Industrial areas Transportation networks Green open spaces Land Use in Karst Areas: Protection of biodiversity Preservation of underground water resources Land Use in Mining Areas: Rehabilitation of former mining land 	1	
Land Use in Rural and Urban Regions : • Rural Areas: • Agriculture • Forests • Nature conservation • Rural settlements • Urban Areas: • Dense settlements • Commercial areas • Industrial areas • Industrial areas • Transportation networks • Green open spaces Land Use in Karst Areas: • Protection of biodiversity • Preservation of underground water resources Land Use in Mining Areas: • Rehabilitation of former mining land • Sustainable management to reduce environmental and	1	
Land Use in Rural and Urban Regions : • Rural Areas: • Agriculture • Forests • Nature conservation • Rural settlements • Urban Areas: • Dense settlements • Commercial areas • Industrial areas • Industrial areas • Transportation networks • Green open spaces Land Use in Karst Areas: • Protection of biodiversity • Preservation of underground water resources Land Use in Mining Areas: • Rehabilitation of former mining land • Sustainable management to reduce environmental and social impacts	1	

Land Use in Peat Areas:	1	
Protection of stored carbonPreservation of biodiversity		
Land Use in Swamp Areas:		
 Management for wet farming Nature conservation Flood mitigation 		
Epilogue:	1	<u>.</u>
The importance of integration:		
 Ecological aspects Economic aspects 		
\circ Social aspects		
 Cultural aspects 		
Ensuring environmental sustainability		
Preserving ancient sites as part of human cultural		
heritage		

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		50%
2.	Final Examination		50%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Arthur C. Nelson, Joseph F. Schilling. Introduction to Land Use Planning and Zoning. Arthur C. Nelson, Joseph F. Schilling. 2017.
- 2. Julian Conrad Juergensmeyer, Thomas E. Roberts, Patricia E. Salkin. Land Use Planning and Development Regulation Law. West Academic Publishing. 2016
- 3. Philip R. Berke, David R. Godschalk, Edward J. Kaiser, Jeffrey R. Anderson. Urban Land Use Planning. University of Illinois Press. 2006.
- 4. Rangkuti, R. Perencanaan Tata Guna Tanah. PT Pradnya Paramita. 2003.
- 5. Richard L. Morrill, David L. Namowitz. Land Use Planning: A Casebook on the Use, Misuse, and Reuse of Urban Land. Planners Press. 1987.

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Page | 53

ELECTIVE COURSES

TNH1512: Soil Mineralogy

A. Module identity

1	Course Name	Soil Mineralogy
2	Course Code	TNH1512
3	Credit	2(2-0)
4	Semester	
5	Pre-requisite	
6	Coordinator	Dr. Ir. R.A. Dyah Tjahyandari Suryaningtyas, MAppl.Sc
7	Lecturers	Dr Ir Iskandar
8	Language	Indonesian
9	Program(s) in which the course	Internal department: MSS
	is offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-
		20%

B. Workloads (total contact hours and credits per semester)

Cre	edit		Contact			Self-study	Other	Total
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To explain and describe the dominant minerals in soil, primary and secondary minerals, the main minerals that make up rocks.
- 2. To explain and relate the dominant mineral content in the soil to the chemical and physical properties of the soil, in accordance with the knowledge that has been obtained.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to recognize the	Lecture and Class	Written Test
	relationship between the minerals in	Discussion	
	the soil and the soil's properties or		
	processes		
2.	Students are able to state the	Lecture and Class	Written Test
	definitions of minerals and crystals	Discussion	

IPB University

	and understand the systematics of minerals.		
3.	Students are able to name and describe feldspar, olivine, and pyroxene.	Lecture and Class Discussion	Written Test
4.	Students are able to name and describe carbonate, halide, sulphate, and sulphide minerals.	Lecture and Class Discussion	Written Test
5.	Students are able to name and describe the minerals allophane and imogolite.	Lecture and Class Discussion	Written Test
6.	Students are able to name and describe phyllosilicate minerals.	Lecture and Class Discussion	Written Test
7.	Students are able to name and describe phyllosilicate minerals, including their types and characteristics.	Lecture and Class Discussion	Written Test
8.	Students are able to name and describe the minerals Fe, Al, and Mn oxides/oxyhydroxides.	Lecture and Class Discussion	Written Test
9.	Students are able to name and describe the minerals Fe, Al, and Mn oxides/oxyhydroxides, including their properties and significance.	Lecture and Class Discussion	Written Test
10.	Students are able to name and describe silica minerals.	Lecture and Class Discussion	Written Test
11.	Students are able to name and describe the weathering processes of minerals and rocks.	Lecture and Class Discussion	Written Test
12.	Students are able to explain the processes of soil formation.	Lecture and Class Discussion	Written Test
13.	Students are able to name and describe mineral analysis methods, including polarizing microscopy, XRD, TG/DTA, and IRS.	Lecture and Class Discussion	Written Test

Торіс	Number of Week(s)	Contact Hours
Introduction: The relationship between mineralogy and soil	1	
science		
Definitions of minerals, crystals, and systematic mineralogy	1	
Feldspar, Olivine, Piroxin	1	
Carbonates, Halides, Sulfates, Sulfides	1	
Allophane, Imogolite	1	
Phyllosilicate	2	
Fe, Al, Mn- Oxides/Oxyhydroxides	2	
Silica	1	
Weathering of Minerals and Rocks	1	
Soil Formation Process	2	

Mineral analysis methods: polarizing microscope, XRD, TG/DTA,	1	
IRS		

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		35%
2.	Final Examination		35%
3.	Quiz 1		15%
4.	Quiz 2		15%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- Hurchman, G.J.; Lowe, D.J. 2012. Alteration, formation, and occurrence of minerals in soils. *In*: Huang, P.M.; Li, Y; Sumner, M.E. (editors) "Handbook of Soil Sciences. 2nd edition. Vol. 1: Properties and Processes". CRC Press (Taylor & Francis), Boca Raton, FL, pp.20.1-20.72
- 2. Singh, B. & Schulze, D. G. (2015) Soil Minerals and Plant Nutrition. Nature Education Knowledge 6(1):1
- 3. U. Schwertmann and R.M. Taylor. 1989. Iron Oxides. In Minerals in Soils Environments
- 4. Hsu, P.H. 1989. Aluminum Hydroxides and Oxyhydroxides. In Minerals in Soils Environments
- 5. Monger, H.C. and E.F. Kelly. 2002. Silica Minerals. In J.B. Dixon and D.G. Schulze (eds). Soil Mineralogy with Environmental Applications. Soil Sci. Soc. Am., Madison, Wisconsin

Journal articles:

a) Selected articles (to be adapted in yearly basis)

TNH1514: Remediation Technology and Ameliorant Materials

A. Module identity

1	Course Name	Remediation Technology and Ameliorant Materials
2	Course Code	TNH1514
3	Credit	2(2-0)
4	Semester	
5	Pre-requisite	
6	Coordinator	Dr Ir Darmawan, M.Sc
7	Lecturers	Dr Ir Iskandar
8	Language	Indonesian
9	Program(s) in which the course	Internal department: MSS
	is offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-
		20%

B. Workloads (total contact hours and credits per semester)

Credit Contact		Self-study	Other	Total				
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			
*) Semester credit unit according to the Indonesian higher educational system								

1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To explain and describe the meaning and terms related to soil remediation, including forms of pollutants/contaminants, damage/pollution assessment, and legislation on the prevention and management of land damage/pollution.
- 2. To explain the basic principles and techniques of soil remediation, including electrokinetic/electrochemical decontamination techniques and phytoremediation.
- 3. To explain soil quality and the functions of various materials used in soil remediation, such as coal ash, volcanic ash, sand, rock, charcoal/biochar, clay, phosphate rock, etc.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to understand and	Lecture and Class	Written Test
	explain the meaning and	Discussion	
	terminology related to soil		
	remediation.		
2.	Students are able to explain soil,	Lecture and Class	Written Test
	sediment, and groundwater as	Discussion	
	entities/objects of remediation.		
3.	Students are able to identify and	Lecture and Class	Written Test
	explain the sources and forms of	Discussion	
	pollutants/contaminants, as well as		
	the types of land damage,		
	particularly caused by pollution.		
4.	Students are able to explain	Lecture and Class	Written Test
	damage/pollution assessments and	Discussion	
	legislation for preventing and		
	managing land damage/pollution.		
5.	Students are able to explain the	Lecture and Class	Written Test
	basic principles and techniques of	Discussion	
	soil remediation.		
6.	Students are able to explain various	Lecture and Class	Written Test
	electrokinetic and electrochemical	Discussion	
	decontamination techniques.		

7.	Students are able to explain various	Lecture and Class	Written Test
	decontamination techniques using	Discussion	
	phytoremediation.		
8.	Students are able to explain the	Lecture and Class	Written Test
	concept of soil and its role in plant	Discussion	
	growth.		
9.	Students are able to explain soil	Lecture and Class	Written Test
	quality.	Discussion	
10.	Students are able to name and	Lecture and Class	Written Test
	explain the types and functions of	Discussion	
	coal ash in improving soil quality.		
11.	Students are capable of naming and	Lecture and Class	Written Test
	explaining the functions of volcanic	Discussion	
	ash, sand, and various types of		
	rocks in improving soil quality.		
12.	Students are capable of naming and	Lecture and Class	Written Test
	explaining the function of charcoal	Discussion	
	in improving soil quality.		
13.	Students are capable of naming and	Lecture and Class	Written Test
	explaining the function of clay in	Discussion	
	improving soil quality.		
14.	Students are capable of naming and	Lecture and Class	Written Test
	explaining the types and functions	Discussion	
	of various soil improvers used in soil		
	quality improvement.		

Торіс	Number of Week(s)	Contact Hours
Introduction: Definitions and key words related to soil	1	
remediation		
Soil, sediment, and groundwater as entities/objects of	1	
remediation.		
Sources and forms of pollutants/contaminants, and forms of land	1	
damage, especially those caused by pollution.		
Damage/pollution assessment and legislation for preventing and	1	
managing land damage/pollution.		
Basic principles and techniques of soil remediation.	1	
Electrokinetic and electrochemical decontamination techniques.	1	
Decontamination using Phytoremediation	1	
Soil and Plant Growth	1	
Soil Quality	1	
Coal Ash	1	
Vulcanic Ash, Sand, Rocks	1	
Charcoal/Biochar	1	
Clay	1	
Land repair materials	1	

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		50%
2.	Final Examination		50%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Blume, H.-P., Horn, R., Thiele-Bruhn, S. 2010. Soil Conservation Manual. Soil ecology and pollution / preventive and defensive protective measures. Wiley- VCH, Weinheim.
- 2. Mohr, E.C.J., F.A. van Baren, J. Van Schuylenborgh. 1972. Tropical soils: a comprehensive study of their genesis. Nederlands: Gueze Dordrecht
- 3. Borchardt, G. 1989. Smectites. In J. B. Dixon and S. B. Weed. Minerals in Soil Environments. SSSA Book Series.

4.

Journal articles:

- a) Selected articles (to be adapted in yearly basis)
- b) Nartey, O.D. and Zhao, B. 2014. Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview. Advances in Materials Science and Engineering (<u>http://dx.doi.org/10.1155/2014/715398</u>)
- c) Spokas, K.A. et al. 2012. Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration (J. Environ. Qual. doi:10.2134/jeq2011.0069
- d) Xiao, X. et al., 2018. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review (Environ Sci Technol. 2018 May 01; 52(9): 5027–5047. doi:10.1021/acs.est.7b06487)
- e) Kalus, Kajetan; Koziel, Jacek A.; Opaliński, Sebastian. 2019. "A Review of Biochar Properties and Their Utilization in Crop Agriculture and Livestock Production" *Appl. Sci.* 9, no. 17: 3494. <u>https://doi.org/10.3390/app9173494</u>
- f) Jien, S.H. and C.S. Wang. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 110:225-233 <u>https://doi.org/10.1016/j.catena.2013.06.021</u>

Others:

- Darmawan, 2001. Feasibility of Electrokinetic Decontamination Technology for Soils That Differ in Cation Exchanger Composition and Polluted by Heavy Metals. Dissertation. Kyushu University
- Zapata, F., R.N. Roy. 2004. Use of Phosphate Rocks for Sustainable Agriculture. Food and Agriculture Organization of the United Nations, Rome. <u>https://www.fao.org/3/y5053e/y5053e00.htm#Contents</u>
- Phosphorus Future. <u>http://phosphorusfutures.net/</u>

PWL1652: Geographic Information Systems

A. Module identity

1	Course Name	Geographic Information Systems
2	Course Code	PWL1652

3	Credit	2(2-0)
4	Semester	
5	Pre-requisite	
6	Coordinator	Dr. Baba Barus, M.Sc
7	Lecturers	Dr. Khursatul Munibah; Dr. Muhammad Ardiansyah, Dr
		Boedi Tjahjono, Bambang Hendro Trisasongko, M.Si.,Ph.D
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: Master of Regional Planning (MRP) and
	offered	MSS
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit		Contact			Self-study	Other	Total
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To identify various advanced concepts in GIS knowledge and techniques, including data entry, analytical functions, and examples of GIS applications, particularly in addressing biophysical, social, and economic environmental issues, and designing final outputs.
- 2. To utilize geographic information systems to inventory land and regional characteristics.
- 3. To use geographic information systems for planning sustainable land use and management.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to understand the lecture content: basic GIS concepts and various examples of advanced GIS applications.	Lecture and Class Discussion	Mid Term Examination
2.	Students are able to explain various map projections and coordinate systems in GIS software.	Video and Class Discussion	Mid Term Examination

3.	Students are able to understand and	Lecture and Class	Mid Term Examination
	process vector data in GIS software.	Discussion	
4.	Students are able to recognize the	Lecture and Class	Mid Term Examination
	structure and form of raster data and	Discussion	
	process it in GIS software.		
5.	Students are able to understand	Lecture and Class	Mid Term Examination
	data entry and GPS integration with	Discussion	
	other data or attributes in GIS		
	Software.		Mid Town Evenin ation
б.	Students are able to to recognize	Discussion	Mid term Examination
	creating processing and managing	DISCUSSION	
	snatial data		
7.	Students are able to understand the	Lecture and Class	Mid Term Examination.
	steps for processing and managing	Discussion	Assignment, Presentation
	spatial data.		
8.	Students are able to use functions	Lecture and Class	Final Examination, Assignment
	for analysis, classification,	Discussion	
	generalization of area		
	measurements, lines, and points in		
	thematic mapping, and calculation		
	of spatial data indices (statistics and		
	pattern quantification).		
9.	Students are able to utilise	Lecture and Class	Final Examination
10	Studente are able to une and evoluin	Discussion	Final Examination
10.	linking functions	Discussion	Final Examination
11.	Students are able to use and explain	Lecture and Class	Final Examination
	the function of overlap	Discussion	
12.	Students are able to understand and	Lecture and Class	Final Examination
	create GIS modelling for biophysical	Discussion	
	and socio-economic data analysis.		
	Capable of understanding modelling		
	and GIS simulation for evaluating		
	physical resources and planning.		
13.	Students are able to recognize and	Lecture and Class	Final Examination
	understand the design of both	Discussion	
	academic and general spatial and		
	cartographic products.		
14.	Students are able to explain the	Peer Assessment	Final Examination and Assignment
	process or presenting results from		
	dynamics		
	uynallics.		

Торіс		Number of Week(s)	Contact Hours
Introduction		1	
Map Projection		1	
Vector Data Shapes and Structure	1		
Form and structure of raster data		1	
IPB University Departme	nt of Soil Science and Land Resou	ırce	Page 61

Collection, entry, preprocessing, and management of data.	1	
Database and Management	1	
Database and Queries	1	
Analysis 1	1	
Spatial Neighbourhood Function	1	
Spatial linkage functions	1	
Spatial Analysis: Overlay	1	
Spatial Modelling	1	
Cartography	1	
Contemporary cartography and	1	
webgis		

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination	Week 8	
2.	Final Examination	Week 16	
3.	Assignment		

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Baba Barus dan US Wiradisastra, 2000. Sistem Informasi Geografis (diktat Kuliah). Terbitan Dept ITSL, IPB, Bogor
- Kang-tsung Chang, 2019. Introduction to Geographic Information System. 9th edition. McGraw Hill. 374p
- 3. M.N DeMeyers, 2003. Fundamentals of Geographic Information Systems. 2nd Edition. Wiley, 636p
- 4. Menno J Kraak, F Ormeling, 2003. Cartography: Visualization of Geospatial Data. 2nd edition. Prentice Hall. 205p
- 5. Peter A Burrough, R.A McDonnell, C.D. Lloyd. 2015. Principles of Geographical Information System. 3rd edition, Oxfod Press. 330p
- 6. R. Laurini, 2001. Information Systems for Urban Planning. 1st edition. Taylor and Francis, 349p

Journal articles:

a) Selected articles (to be adapted in yearly basis)

PWL1653: Techniques in Geographic Information

A. Module identity

1	Course Name	Techniques in Geographic Information
2	Course Code	PWL1653
3	Credit	1(0-1)
4	Semester	
5	Pre-requisite	
6	Coordinator	Dr. Dra. Khursatul Munibah, M.Sc
7	Lecturers	Bambang Hendro Trisasongko S.P. M.Si. Ph.D; Dr. Ir. Baba Barus
		M.Sc.; Dr.Drs. Boedi Tjahjono; Dr.Ir. Muhammad Ardiansyah
		M.Eng.Sc.; Wahyu Iskandar S.Hut.
		MAgr
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MRP and MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Credit			Contact		Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To understand and prepare spatial and attribute data for cartographic analysis using Geographic Information Systems (GIS).
- 2. To input and process spatial and attribute data using various analytical techniques, and to cartographically layout data from analysis results.
- 3. To work on mini projects based on spatial and attribute data for specific purposes in line with the intended competencies, and to present and disseminate the analysis results to relevant stakeholders.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to distinguish the functions of RBI maps and thematic maps and recognize GIS software (QGIS and ArcGIS).	Lecture and Class Discussion	Discussion
2.	Students are able to register coordinates, digitize spatial data, and analyse the results.	Lecture and Demo	Student Demo, Report
3.	Students are able to input attribute data, join attribute data, and analyse the results.	Peer Lecture	Student Demo, Report
4.	Students are able to overlay vector data and analyse the results.	Peer Lecture	Student Demo, Report
5.	Students are able to overlay raster data and analyse the results.	Peer Lecture	Student Demo, Report
6.	Students are able to build a Digital Elevation Model (DEM), classify slope classes, and analyse the results	Peer Lecture	Student Demo, Report
7.	Students are able to interpolate spatial data (IDW, kriging) and analyze the results	Peer Lecture	Student Demo, Report
8.	Students are able to carry out road network analysis to find the closest area to the centre of activity and analyse the results	Peer Lecture	Student Demo, Report
9.	Students are able to classify PJ data for land use/land cover and analyse the results	Peer Lecture	Student Demo, Report
10.	Students are able to layout spatial data cartographically and find alternative mini project ideas	Peer Lecture	Student Demo, Report
11.	Students are able to design a small project (mini project) starting from determining the concept, operations, and analysis	Class Discussion	Presentation
12.	Students are able to present and disseminate mini project results	Class Discussion	Presentation

Торіс	Number of Week(s)	Contact Hours
Introduction to map functions and GIS software (Geographic	1	
Information Systems)		
Spatial data input (digitization, GPS data)	1	
Inserting Attributes (Labelling Spatial Data, Joint Attribute)	1	
Geoprocessing Vector Data	1	

Geoprocessing Raster Data	1	
Terrain Analysis using Raster Data	1	
Spatial Data Interpolation (IDW, Kriging)	1	
Identifying Nearby Areas using Road Network Analysis	1	
Remote Sensing Data Extraction	1	
Cartography and Introduction to the Mini Project	1	

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Class Activity		25%
2.	Report		25%
3.	Mini Project		50%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

- https://www.youtube.com/watch?v=quuN1laXNig
- https://peraturan.bpk.go.id/Home/Details/149750/uu-no-11-tahun-2020
- <u>https://peraturanpedia.id/peraturan-kepala-badan-informasi-geospasial-nomor-15-tahun-2014/</u>
- https://tanahair.indonesia.go.id/portal-web/downloadpetacetak

PWL1603: Geospatial Techniques

A. Module identity

1	Course Name	Geospatial Techniques		
2	Course Code	PWL1603		
3	Credit	1(0-1)		
4	Semester			
5	Pre-requisite			
6	Coordinator	Bambang Hendro Trisasongko, M.Si.,Ph.D		
7	Lecturers	Dyah Retno Panuju, S.P., M.Si; Dr. Khursatul Munib	ah, M.Sc	
8	Language	Indonesian		
9	Program(s) in which the course is	Internal department: MRP and MSS		
	offered			
10	Type of teaching	Blended system: Traditional classroom 80-100%, Or	nline 0-20%	
	IPB University Department of Sc	il Science and Land Resource	Page 65	

B. Workloads (total contact hours and credits per semester)

Credit		Contact			Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To understand the basic concepts of geospatial data processing.
- 2. To make predictions and be proficient in modelling land cover/use changes.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to understand the	Lecture and Class	
	lecture content: Basic geospatial	Discussion	
	concepts and their changes.		
2.	Students are able to explore	Lecture	Assignment
	geospatial analyses and methods.		
3.	Students are able to master	Lecture	Presentation
	advanced concepts in remote		
	sensing and machine learning.		
4.	Students are able to demonstrate	Lecture	
	image classification results using		
	software.		
5.	Students are able to explore change	Lecture	Assignment
	analysis.		
6.	Students are able to master	Lecture	
	mapping techniques and		
	understand mathematical		
	relationships between variables.		
7.	Students are able to organize	Lecture	Mini Project 1 Presentation
	research projects based on previous		
	lecture material.		
8.	Students are able to master the	Lecture	
	concept of land use prediction		
	models (CA-Markov).		
9.	Students are able to master the	Lecture	
	concept of land use prediction		
	models (CluMondo)		

10.	Students are able to master the	Lecture	
11.	Students are able to demonstrate	Lecture and Class	Assignment
	their understanding of neural	Discussion	
	network using RS Toolbox		
12.	Students are able to master critical	Lecture and Class	Assignment
	thinking in all aspects of this course.	Discussion	
13.	Students are able to communicate	Lecture and Class	Assignment
	their findings and their ideas on the	Discussion	
	given materials.		

Торіс	Number of Week(s)	Contact Hours
Introduction	1	
Analytical Approaches and Methods	1	
Remote Sensing and Machine Learning	1	
Image Classification using QGIS Plugins	1	
Change analysis: processing preparation and alternative analysis	1	
tecnniques.		
Dasymetric Mapping & Logistic Regression Analysis	1	
Land Use Prediction Model (CA_Marcov)	1	
Land use prediction model (CluMondo)	1	
Introduction to Neural Networks	1	
Implementation of Neural Networks in rstoolbox	1	
SCL Discussion	1	

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Final Examination		30%
2.	Mini Project		50%
3.	Assignments		20%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

•

PWL1651: Remote Sensing and Ground-based Sensors

A. Module identity

1	Course Name	Remote Sensing and Ground-based Sensors
2	Course Code	PWL1651
3	Credit	2(2-0)
4	Semester	
5	Pre-requisite	
6	Coordinator	
7	Lecturers	Dr. Ir. Muhammad Ardiansyah; Bambang Hendro Trisasongko,
		S.P., M.Si., Ph.D; Dr. Dra. Khursatul Munibah
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MRP and MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit	Contact			Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To understand the basic concepts and meaning of remote sensing, sensor characteristics, remote sensing data, and knowledge related to processing remote sensing data for natural resource management and regional planning.
- 2. To understand remote sensing technology for inventorying land characteristics.
- 3. To comprehend the process of remote sensing data processing for land use mapping and landuse change analysis.
- 4. To understand and utilize remote sensing data for land use and management planning.
- 5. To manage tasks responsibly, with honesty, cooperation, openness, loyalty, and high integrity in performing duties within the scope of their activities.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

Page | 68

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to understand the	Lecture and Class	Discussion
	basic definitions and concepts of	Discussion	
	remote sensing, and its general		
2	Applications.	Lecture and Class	Discussion
۷.	explain photographic remote	Discussion	
	sensing systems, including the		
	concepts of aerial photography,		
	aerial sensors/cameras, and the		
	basic characteristics of aerial		
	photography.		
3.	Students are able to understand and	Lecture and Class	Discussion, Assignment
	explain the geometry of aerial	Discussion	
	photography, including projection,		
	relief displacement, and 3D views,		
	aerial photos		
4.	Students are able to understand	Lecture and Class	Discussion
	drone photogrammetry and explain	Discussion	
	the differences between airborne		
	remote sensing and ground-based		
	sensing concepts, as well as explain		
	the use of drone data for land use		
-	planning.		Discussion Assignment
5.	operational natural resource	Lecture and Class	Discussion, Assignment
	satellites including the	Discussion	
	characteristics of the satellites and		
	the sensors they carry, and to apply		
	this knowledge for regional		
	planning.		
6.	Students are able to understand	Lecture and Class	Discussion, Assignment
	operational natural resource	Discussion	
	satellites, including the		
	characteristics of the satellites and		
	sensors they carry, and to		
	regional planning.		
7.	Students are able to understand and	Lecture and Class	Discussion
	explain variations in spectral	Discussion	
	response from remote sensing data,		
	the spectral response of ground		
	sensors, and the spectral response		
	patterns of plants and soil.		Discussion Assistant
δ.	Students are able to understand and	Lecture and Class	וט scussion, Assignment
	thermal remote sensing thermal	DISCUSSION	
	radiation and thermal imaging as		
	well as their applications for heat		
	island mapping and mitigation.		
5. 6. 7. 8.	remote sensing and ground-based sensing concepts, as well as explain the use of drone data for land use planning. Students are able to understand operational natural resource satellites, including the characteristics of the satellites and the sensors they carry, and to apply this knowledge for regional planning. Students are able to understand operational natural resource satellites, including the characteristics of the satellites and sensors they carry, and to comprehend their applications for regional planning. Students are able to understand and explain variations in spectral response from remote sensing data, the spectral response of ground sensors, and the spectral response patterns of plants and soil. Students are able to understand and explain the characteristics of thermal remote sensing, thermal radiation, and thermal imaging, as well as their applications for heat island mapping and mitigation.	Lecture and Class Discussion Lecture and Class Discussion Lecture and Class Discussion Lecture and Class Discussion	Discussion, Assignment Discussion, Assignment Discussion Discussion Discussion

9.	Students are able to understand and explain the initial processing of digital images for further analysis, including mapping built and non- built areas.	Lecture and Class Discussion	Discussion
10.	Students are able to understand and explain pixel grouping (classification), pixel-based classification approaches and strategies, and to master the process of assessing classification accuracy.	Lecture and Class Discussion	Discussion, Assignment
11.	Students are able to understand and explain object-based pixel grouping and its differences from pixel-based classification, pixel-based classification approaches and strategies, and to master the process of assessing classification accuracy.	Lecture and Class Discussion	Discussion
12.	Students are able to understand and explain machine learning-based pixel grouping, technical approaches and strategies for machine learning, and to master operating procedures for machine learning engineering.		Final Examination
13.	Students are able to understand the application of machine learning techniques for land parameterization and mapping, as well as future developments in methodology and applications.	Lecture and Class Discussion	Discussion, Assignment
14.	Students are able to understand and explain land use changes, including the factors and drivers behind these changes, the methodology for monitoring them, and their application in regional planning.	Lecture and Class Discussion	Discussion

Торіс	Number of Week(s)	Contact Hours
Definition and Foundation of Remote Sensing, Applications	1	
of Remote Sensing Data		
Photographic Remote Sensing System:	1	
 Definition and types of aerial photography Aerial sensors/cameras 		
Basic characteristics of aerial photography: endlap/sidelap, scale, photographic resolution, and the process of period photo printing		
---	------	-----------
Resis Coometry of Aerial Photography and the Process of	1	
Visual Interpretation:		
Geometric Elements of Aerial Photography		
Relief Shift, Parallax, and 3D View		
Photo/Orthophoto Maps		
 Interpretation of Aerial Photos for Planning and Land Use 		
UAV/Drone Photogrammetry:	1	
Definition of UAV/Drone		
Drone Characteristics		
 Flying Mission Planning and Drone Photo/Image Mosaicking 		
Drone Applications for Detailed Planning and Land Use Mapping		
Remote Sensing Satellites for Natural Resources: Medium -	1	
Small Resolution		
Types and Characteristics of Medium/Small		
Resolution Satellites: Landsat, Sentinel-2		
Applications for Land Use Mapping and Plant		
Monitoring		
High-Resolution Remote Sensing Satellites for Natural	1	
Resources		
Types and Characteristics of High-Resolution		
Satellites: IKONOS/QB, Pleiades, GeoEye, WorldView		
Applications for Land Use and Plant Mapping		
Review of Basic Characteristics of Remote Sensing		
Data for Natural Resources		
Spectral Response	1	
Spectral Response Patterns		
Spectrometry		
Spectral Beflectance of Plants and Soil		
Thermal Remote Sensing:	1	
Sensing Concept: Thermal Remote Sensing		
Thermal Image Interpretation		
Surface Temperature Mapping with Thermal Imagery		
and Its Application for Regional Planning		
Digital Image Preprocessing and Image Sharpening:	1	
Preprocessing: Geometric/Radiometric Correction		
and Image Enhancement		
Remote Sensing Data Index and Its Application for Identifying Built-Up Areas		
IPB University Bogor Indonesia	TLCE	Page 71

Digital Image Classification:	1	
Image Classification		
Pixel-Based Classification Approaches		
Assessment of Classification Accuracy		
Object-Based Image Classification:	1	
Object-Based Classification		
Image Segmentation and Classification Process		
 Identification and Mapping of Land Use Based on 		
Digital Classification of Remote Sensing Data		
Machine Learning:	1	
Basic Concepts of Machine Learning		
 Machine Learning Techniques and Approaches 		
Accuracy Assessment		
Machine Learning:	1	
 Identify land characteristics and land use mapping 		
using machine learning analysis techniques.		
Future technical developments in machine learning.		
Land Cover/Use Change Detection:	1	
Changes in land use		
Change detection methods (binary change, "from-to"		
analysis, CVA, probability change)		
Use change detection techniques for monitoring land		
allocation and planning		

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination	Week 8	35%
2.	Final Examination	Week 16	35%
3.	Report		30%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. T.M. Lillesand, R.W. Kiefer, and J. Chipman. 2015. Remote Sensing and Image Interpretation. 7th Edition. John Wiley & Sons, Inc.
- 2. J.R. Jensen. 2015. Introductory Digital Image Processing: A Remote Sensing Perspektive. Prentice-Hall, Engewood Clifft, NJ.

- 3. R.S. Dwivedi. 2017. Remote Sensing of Soils. Springer-Verlag GmbH, Germany
- 4. O. Theobald. 2017. Machine Learning for Absolute Beginners
- A.E. Maxwell, T. A. Warner, and F. Fang. 2018. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39:9, 2784-2817, DOI: 10.1080/01431161.2018.1433343

Journal articles:

a) Selected articles (to be adapted in yearly basis)

TNH1633: Ecohydrology and Sustainable Water Resource Management

A. Module identity

1	Course Name	Ecohydrology and Sustainable Water Resource
		Management
2	Course Code	TNH1633
3	Credit	3(3-0)
4	Semester	
5	Pre-requisite	
6	Coordinator	Dr. Ir. Yayat Hidayat, M.Si
7	Lecturers	Dr. Ir. Enni Dwi Wahjunie, M.Si; Dr. Ir. Dwi Putro Tejo
		Baskoro, M.Sc.Agr; Dr. Sri Malahayati Yusuf., SP., M.Si.
8	Language	Indonesian
9	Program(s) in which the course	Internal department: MSS
	is offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-
		20%

B. Workloads (total contact hours and credits per semester)

Cre	edit	Contact			Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To Understand and master the principles of ecohydrology and be able to apply these principles to sustainable water resources management.
- 2. To analyze, find solutions for, and apply solutions to resolving water resource management problems related to:
 - a. Quantity and quality of water resources

- b. Economic value of water resources
- c. Strategic issues of water resources
- d. Conservation of water resources and the environment
- e. Hydrometeorological disaster mitigation
- f. Integrated watershed management
- g. Land use and regional spatial planning
- h. Water resources management strategies and policies
- i. Integrated water resources management

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to understand,	Lecture	Question and Answer
	explain, and develop the concept of		
	ecohydrology as a new paradigm in		
	sustainable water resource		
	management.		
2.	Students are able to understand and	Lecture	Question and Answer
	explain the characteristics of water		
	resources in Indonesia (quantity,		
	quality, continuity).		
3.	Students are able to understand,	Lecture	Question and Answer
	explain, and develop the economic		
	value of water resources in various		
	aspects of life.		
4.	Students are able to understand and	Lecture	Question and Answer
	explain strategic issues in water		
	resource management and their		
	development within integrated water		
	resource management.		
5.	Students are able to understand,	Lecture	Question and Answer
	explain, and develop ecohydrology		
	from the perspective of water		
	resource and environmental		
	conservation.		
6.	Students are able to understand,	Lecture	Question and Answer
	explain, and develop ecohydrology		
	from the perspective of		
	hydrometeorological disaster		
	mitigation (floods and droughts),		
	with a focus on land-based		
_	approaches.		
7.	Students are able to understand,	Lecture	Quiz
	explain, and develop ecohydrology		
	from the perspective of		
	hydrometeorological disaster		
	mitigation (floods and droughts),		
	with a focus on water bodies.		

8.	Students are able to understand, explain, and develop a watershed approach to water resource management.	Lecture	Question and Answer
9.	Students are able to understand, explain, and develop strategies for restoring watershed hydrological functions in water resource management.	Lecture	Question and Answer
10.	Students are able to understand, explain, and develop aspects of integration and sustainability in water resources management.	Lecture	Question and Answer
11.	Students are able to understand, explain, and develop land use and spatial planning based on water resources.	Lecture	Quiz
12.	Students are able to understand, explain, and develop best management practices for water resource management.	Lecture	Question and Answer
13.	Students are able to understand, explain, and formulate various problems and solutions for sustainable water resource management.	Collaborative learning and Independent Study	Report
14.	Students are able to understand, explain, and formulate management strategies and policies for water resources.	Collaborative learning and Independent Study	Report, Presentation

E. Module contents

Торіс	Number of Week(s)	Contact Hours
Ecohydrology and ecohydrological principles in sustainable water	1	
resource management		
 Surface water and groundwater resources 	1	
Quantity, quality, and continuity of water resources in		
Indonesia		
Economic value of water resources (agriculture, households,	1	
cities, industry, fisheries, hydropower, and the environment)		
Strategic issues in water resource management related to	1	
water balance (availability vs. need)		
 Flood and drought management 		
 Environmental carrying capacity and environmental 		
health		
 Integrated spatial planning and resource management 		
Ecohydrology in water resource and environmental conservation	1	
Ecohydrology from the perspective of hydrometeorological	1	
disaster mitigation (floods and droughts): land-based		

Ecohydrology from the perspective of hydrometeorological	1	
disaster mitigation (floods and droughts): based on water bodies		
Watershed Approach to Water Resource Management	1	
Restoration of Watershed Hydrological Functions in Water	1	
Resource Management		
Aspects of Integration and Sustainability in Water Resources	1	
Management		
Land Use/Spatial Planning Based on Water Resources	1	
Best Management Practices for Water Resources Management	1	
Review Paper on Ecohydrology and Sustainable Water Resources	1	
Management		
Water Resources Management Strategies and Policies	1	

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Fulazzaky M A. 2014. Challenges of Integrated Water Resources Management in Indonesia. Water (6): 2000-2020. doi:10.3390/w6072000.
- 2. Rhagunath, H.M. 2006. Hydrology: Principle, Analysis and Design. New Age International (P) Limited, Publisher 4835/24, Ansari Road, Daryaganj, New Delhi 110002. 477p.
- 3. Soeprobowati T R. 2010. Ekohidrologi Konsep Pengelolaan Lingkungan Berkelanjutan. BIOMA, Vol. 12, No. 1, Hal. 13-19. ISSN: 1410-8801.
- 4. Wood P J, D M. Hannah, and JP. Sadler. 2010. Hydroecology and Ecohydrology: Past, Present and Future. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England. 466p.

Journal articles:

- a) Selected articles (to be adapted in yearly basis)
- b) Zalewski, M. 2010. Ecohydrology for compensation of Global Change. Brazilian Journal of Biology. Vol. 70 (3): 689-695

Others:

• Zalewski M and I W. Lotkowska. 2004. Integrated Watershed Management: Ecohydrology and Phytotechnology Manual. United Nation Environment Program. Divison of Technology, Industry and Economic, and International Environmental Technology Centre. Osaka 538-0036. Japan

- World Meteorological Organization, 2009. Guide to Hydrological Practices, Volume II: Management of Water Resources and Application of Hydrological Practices WMO-No. 168.
- Light H.M, M.R. Darst, L J, Lewis, and D A. Howel. 2002. Hydrology, Vegetation, and Soils of Riverine and Tidal Floodplain Forests of the Lower Suwannee River, Florida, and Potential Impacts of Flow Reductions. United State Geological Survey Profesional Paper 1656A.
- Global Water Partnership and the International Network of Basin Organization. 2009. A Handbook for Integrated Water Resource Management in Basin. Elanders, Sweden. ISBN: 978-91-85321-72-8.

TNH1501: Land Degradation and Rehabilitation

A. Module identity

1	Course Name	Land Degradation and Rehabilitation
2	Course Code	TNH1501
3	Credit	2(2-0)
4	Semester	
5	Pre-requisite	
6	Coordinator	Dr Ir. Dwi Putro Tejo Baskoro, MSc
7	Lecturers	Dr Ir. Budi Nugroho MS; Dr Ir. Gunawan Djajakirana
8	Language	Indonesian Language
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Credit		Contact		Self-study	Other	Total		
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To explain the scope, meaning, terms, and phenomena related to land damage and degradation, as well as measure and analyze parameters of land damage and degradation, and apply this knowledge to manage land resources to prevent further degradation.
- 2. To analyse and apply the principles of land rehabilitation to manage land resources effectively, prevent land degradation, and resolve land resource management issues.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to understand,	Lecture	Question and Answer
	explain, and develop the concepts		
	and scope of land degradation and		
	rehabilitation.		
2.	Students are able to explain various	Lecture	Question and Answer
	forms of erosive land damage on		
	agricultural land.		
3.	Students are able to explain various	Lecture	Question and Answer
	forms of erosive land degradation		
-	and efforts to prevent and address it.		
4.	Students are able to explain various	Lecture	Question and Answer
	forms of non-erosive agricultural		
	land damage, as well as their		
F	Studente ere able te evelein verieue	Lastura	Question and Answer
5.	forme of non-presive land damage	Lecture	Question and Answer
	ionins of non-erosive tand damage,		
	address it		
6	Students are able to explain various	Lecture	Question and Answer
0.	forms of erosion related to pollution	Lecture	
7.	Students are able to explain various	Lecture	Ouestion and Answer
	forms of erosion related to pollution		
8.	Students are able to explain various	Lecture	Ouestion and Answer
	efforts to prevent and control land		2
	degradation caused by pollution,		
	acidification, salinization, and		
	sodification.		
9.	Students are able to explain and	Lecture	Question and Answer
	understand the characteristics of		
	wetlands and the types of		
	degradation that occur in them.		
10.	Students are able to explain and	Lecture	Question and Answer
	understand biological degradation.		
11.	Students are able to explain various	Lecture	Question and Answer
	forms of land damage related to		
	mining activities, as well as methods		
10	to prevent and address them.	Lastura	Questian and Annuar
12.	Students are able to explain the	Lecture	Question and Answer
	that a source in water do so well as		
	matheds to provent and address		
	them		
13.	Students are able to explain and	Lecture	Ouestion and Answer
	evaluate land degradation		
14.	Students are able to explain and	Lecture	Question and Answer
	understand land use planning to		
	anticipate and prevent land		
	degradation		

E. Module contents

Торіс	Number of Week(s)	Contact Hours
Land Degradation and Rehabilitation Scope	1	
Land Degradation Due to Agricultural Activities: Erosive	1	
Degradation – Processes, Mechanisms, Forms, and Impacts		
of Erosion and Sedimentation		
Prevention, Control, and Mitigation of Land Degradation Due	1	
to Erosion and Sedimentation		
Non-Erosive Land Degradation on Agricultural Land:	1	
Chemical Degradation, Organic Material Degradation,		
Nutrient Depletion, and Leaching		
Prevention, Control, and Mitigation of Non-Erosive Land	1	
Degradation		
Pollution and Acidification	1	
Salinization and Sodification	1	
Prevention, Control, and Mitigation of Land Degradation Due	1	
to Pollution, Acidification, Salinization, and Sodification		
Characterizing Wetlands and Land Degradation in Wetlands	1	
Biological Soil Degradation - Biological Deterioration	1	
Characteristics of Ex-Mining Land and Land Degradation	1	
Processes on Ex-Mining Land		
Rehabilitation: Restoration and Reclamation of Wetlands	1	
and Ex-Mining Land		
Land Degradation Evaluation	1	
Land Use Planning: Anticipatory Methods for Preventing and	1	
Overcoming Land Degradation		

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Arsyad, S. 2006. Konservasi Tanah dan Air. IPB Press. Bogor
- 2. Barrow, 1991. Land Degradations.
- 3. Hudson, N. 1971. Soil Conservation. Cornell University Press. NY

- 4. Troeh, F. R., J. A. Hobbs, and R.L. Donahue. 1980. Soil and Water Conservation for Productivity and Environmental Protection. Prentice Hall Inc. Englewood Cliffs, NY.
- 5. Hank and Jurinak, 1981. Modern Irrigated Soils.

Journal articles:

a) Selected articles (to be adapted in yearly basis)

TNH1541: Agricultural Waste Composting

A. Module identity

1	Course Name	Agricultural Waste Composting
2	Course Code	TNH1541
3	Credit	3(2-1)
4	Semester	
5	Pre-requisite	
6	Coordinator	Dr. Rahayu Widyastuti, MSc
7	Lecturers	Dr. Ir. Gunawan Djajakirana, MSc
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit	Contact			Self-study	Other	Total	
SKS	ECTS	Lecture Exercise Laboratory Practice						

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To understand organic fertilizers, including their raw material sources, potential, manufacturing technology, development, properties, quality, use, and economic value.
- 2. To understand compost in relation to its raw material sources, potential, development, compost-making technology, properties, quality, use, and economic and ecological value.
- 3. To understand the evaluation of organic fertilizer/compost quality through laboratory tests, as well as the requirements and procedures for obtaining a distribution permit if they wish to commercialize it.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to explain the importance of organic matter for improving the physical, chemical, and biological properties of soil, plant growth and production, and soil quality.	Lecture and Class Discussion	Written Test, Assignment

2.	Students are able to understand the nature, potential, and general uses of various types of agricultural waste.	Lecture and Class Discussion	Written Test, Assignment
3.	Students are able to explain the potential of plant waste from food and horticulture at the national level, including its distribution, general characteristics, and current uses.	Lecture and Class Discussion	Written Test, Assignment
4.	Students are able to explain the potential of plantation waste in Indonesia, including its distribution, general characteristics, and current uses.	Lecture and Class Discussion	Written Test, Assignment
5.	Students are able to explain the potential of livestock and fisheries waste in Indonesia, including its distribution, general characteristics, and current uses.	Lecture and Class Discussion	Written Test, Assignment
6.	Students are able to explain the potential of forestry waste in Indonesia, including its distribution, general characteristics, and current uses.	Lecture and Class Discussion	Written Test, Assignment
7.	students are able to explain the potential of agricultural processing industrial waste in Indonesia, including its distribution, general properties, and current uses.	Lecture and Class Discussion	Written Test, Assignment
8.	Students are able to explain the factors that influence the composting process.	Lecture and Class Discussion	Written Test, Assignment
9.	Students are able to understand the criteria for compost maturity and evaluate the quality of organic fertilizer physically, chemically, and biologically.	Lecture and Class Discussion	Written Test, Assignment
10.	Students are able to understand how to improve the quality of organic fertilizer and the procedures for registering organic fertilizer.	Lecture and Class Discussion	Written Test, Assignment
11.	 Students are able to: Explain the physical, chemical, and biological quality criteria for organic fertilizer Understand organic fertilizer registration procedures 	Lecture and Class Discussion	Written Test, Assignment

	 Evaluate quality and conduct efficacy testing 		
12.	Students are able to explain the Minister of Agriculture's regulations on organic fertilizers.	Lecture and Class Discussion	Written Test, Assignment

E. Module contents

Торіс	Number of Week(s)	Contact Hours
Definition of organic matter	1	
Its general properties		
 Improvement of the physical, chemical, and biological properties of acil with organic metter. 		
properties of soft with organic matter	1	
Valious killus of organic waste Concrete observatoristics, netantial, and use of different	1	
• General Characteristics, potential, and use of university types of agricultural waste		
Potential agricultural waste from food crops	1	
Potential horticultural waste		
Potential plantation waste, including its general characteristics	1	
and current uses		
Livestock and Fishery Waste	1	
Forestry Waste	1	
Agro – Industrial Waste	1	
Nutrient content and size of materials	1	
Water content	1	
Inoculum		
Temperature		
Compost Maturity: Criteria and Quality Evaluation	1	
Quality Improvement and Registration of Organic Fertilizers	2	
Basic Considerations and Criteria	1	

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Mid Term Examination		40%
2.	Final Examination		40%
3.	Assignment		20%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Alexander, M. 1972. Introduction to Soil Microbiology. John Wiley & Sons, Inc. New York and London: 472 pp
- 2. Federal Compost Quality Assurance Organization. 1994. Methods Book for the Analysis of Compost. 3rd Supplemented and Revised Edition. Abfall Now e.V Publishing House, Stuttgart, 88pp
- 3. Soepardi. 1983. Sifat dan Ciri Tanah. Jurusan Tanah, Fakultas Pertanian, Institut Pertanian Bogor. Bogor. 591 hal.
- 4. Insam, H., N. Riddech, S. Klammer (Eds) 2002. Microbiology of Composting. Springer-Verlag Berlin, Heidelberg New York 632p
- 5. Schinner, F., R. Ohlinger, E. Kandeler and R. Margesin. Methods in Soil Biology. Springer-Verlag Berlin Heidelberg New York:426 pp

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

- Iswandi, A. 1989. Biologi Tanah dalam Praktek. PAU Bioteknologi Institut Pertanian Bogor:254 pp
- Permentan-No.-28-Permentan-SR.130-5-2009-TAHUN-2009-TENTANG- PUPUK ORGANIK, PUPUK HAYATI DAN PEMBENAH TANAH
- Permentan-No. 70 Tahun 2011

TNH1523: Fertilizer Technology and Fertilization

A. Module identity

1	Course Name	Fertilizer Technology and Fertilization
2	Course Code	TNH1523
3	Credit	2(2-0)
4	Semester	
5	Pre-requisite	
6	Coordinator	Dr. Ir. Budi Nugroho, MSi
7	Lecturers	Dr. Ir. Lilik Tri Indriyati, MSc
8	Language	Indonesian
9	Program(s) in which the course	Internal department: MSS
	is offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-
		20%

B. Workloads (total contact hours and credits per semester)

Cre	edit	Contact		Self-study	Other	Total		
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To understand mineral fertilizers in relation to their sources, manufacturing technology, properties, usage, and economic value.
- 2. To understand biological fertilizers in relation to their sources, isolation and development, propagation technology, properties, uses, and economic and ecological value.
- 3. To understand nutrient evaluation through soil and biological tests, the interpretation of results, and fertilizer recommendations based on soil test approaches, biological tests, or both.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students are able to explain:	Lecture and Class	Written Test, Report
	The definition of	Discussion	
	inorganic, organic, and		
	biological fertilizers.		

	• The history of fertilizer development and types of					
2.	Students are able to explain:	Lecture and Class	Written Test, Report			
	Nitrogen Fertilizer: N	Discussion				
	fertilizer production					
	fertilizers, and their					
	properties.					
	fertilizer production					
	technology, types of P					
	properties.					
	Potassium Fertilizer: K					
	technology, types of K					
	fertilizers, and their					
	properties					
3.	Students are able to explain:	Lecture and Class	Written Test, Report			
	Calcium Fertilizer:	Discussion				
	Production technology					
	 Magnesium Fertilizer: 					
	Production technology					
	 Sulfur Fertilizer: 					
	Production technology					
	and properties					
4.	Students are able to explain:	Lecture and Class Discussion	Written Test, Report			
	Micro Fertilizer:					
	types of micro fertilizers,					
	and their properties.					
	 Slow/Controlled Release Fertilizer: Production 					
	technology, types, and					
	properties of slow/controlled release					
	fertilizers					
5.	Students are able to explain:	Lecture and Class	Written Test, Report			
	• The philosophy of organic	าวรับของเปม				
	and biological fertilizers					
	production technology					
	IPB University Department of Soil Science and Land Resource					

	 Biological fertilizer production technology 		
6.	 Students are able to explain: The important role of microorganisms for soil health Isolation of functional organisms Multiplication of functional organisms The potential of functional organisms to increase nutrient availability 	Lecture, Class Discussion, Video	Written Test, Report
7.	 Students are able to explain: Mass multiplication of functional organism isolates and the challenges involved Various types of bioreactors for microorganism multiplication Characteristics of carrier isolates and their suitability for mass production of biofertilizers 	Lecture and Class Discussion	Written Test, Report
8.	 Students are able to explain: Characteristics of organic and enriched organic fertilizers Population of organisms in single biofertilizers and consortia Compatibility between functional organisms Expiry limits for biological fertilizers 	Lecture, Class Discussion, Video	Written Test, Report
9.	 Students are able to explain: Nutrient evaluation philosophy Soil testing Biological and chemical testing 	Lecture, Class Discussion, Video	Written Test, Report

	Correlation and calibration		
	 Interpretation of results 		
10.	Students are able to explain:	Lecture and Class	Written Test, Report
		Discussion	
	 Fertilization 		
	recommendation		
	philosophy		
	General		
	recommendations		
	Recommendations based		
	on geological and soil		
	maps		
	Location-specific		
	recommendations		
	Fertilizer		
	on soil tests		
11	Students are able to explain:	Lecture and Class	Written Test Benort
		Discussion	Witten lest, hepolt
	 Philosophy of plant 	Discussion	
	analysis		
	Relationship between		
	age, nutrients, and yield		
	Factors that influence		
	plant nutrient levels		
	 Interpretation of plant 		
	analysis results		
12.	Students are able to explain:	Lecture and Class	Written Test, Report
	 Philosophy of fertilization 	Discussion	
	programs		
	Fertilizer placement		
	Factors influencing		
	fertilizer placement: soil		
	properties, plant		
	characteristics,		
	movement of		
	fertilizers/nutrients, salt		
	index, timing, carryover,		
	and cropping systems		
10	Students are able to evoluin:	Lecture and Class	Written Test Poport
13.		Discussion	Whiteh lest, Report
	Philosophy of fertilization	2.0000000	
	programs		
	Fertilizer placement		
	Factors influencing		
	fertilizer placement: soil		
	properties, plant		
	characteristics,		

	 movement of fertilizers/nutrients, salt index, timing, carryover, and cropping systems Efficient use of fertilizers 		
14.	 Students are able to explain: Integrated nutrient diagnosis Diagnosis and Recommendation Integrated System (DRIS) Compositional Nutrient Diagnosis (CND) Deviation of Optimum Percentage (DOP) Fertilization recommendations based on cation comparison 	Lecture and Class Discussion	Written Test, Report

E. Module contents

Торіс	Number of Week(s)	Contact Hours
Introduction	1	
N, P, and K Fertilizer Production Technology	1	
Ca, Mg, and S Fertilizer Production Technology and Their	1	
Derivatives		
Microfertilizer Production Technology and Slow-	1	
Release/Controlled-Release Fertilizers		
Technology and Production Systems for Organic and Biological	1	
Fertilizers		
The role of microorganisms in soil health and biological fertilizers:	1	
isolation, propagation, and potency		
Biological Fertilizer Production	1	
Fertilizer Characterization (Organic and Biological)	1	
Evaluation of Nutrient Status and Fertilizer Recommendations	1	
Based on Soil Tests		
Development of Fertilization Recommendations I	1	
Development of Fertilization Recommendations II	1	
Engineering Concepts and Fertilizer Applications	1	
Economics and Efficiency of Fertilizer and Lime	1	
Fertilization Program Development	1	

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Test 1 (from Dr Ir Budi Nugroho MSi)		30%
2.	Test 2 (from Dr Ir Lilik Tri Indriati MSc)		20%

3.	Assignment
----	------------

30%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Hignet, TP. (Ed). 1987. Fertilizer Manual. Springer -Science + Busines Media BV
- 2. UNIDO and IFDC (Eds). 1998. Fertilizer Manual. Kluwer Acad. Publs. Dordrecht, The Netherlands
- 3. Rai, MK. 2006. Handbook of Microbial Fertilizer. The Harword Press. Inc. Binghamton, NY
- 4. Anonimouse 2006. Biofertilizer Manual. FNCA Biofertilizer group. Japan Atomic Industial Forum (JAIF)
- 5. Reddy, M.S. et al., (Eds). 2014. Recend Edvances in Biofertilizer and Biofungicides (PGPR) for Sustainable Agriculture. Cambridge Scholars , Publs. Newcastle, UK.
- 6. Brown, JR. (Ed) 1987. Soil Testing : Sampling , Correlation, Calibration and Interpretation. Soil Science Society of America, Inc. Madison, Wisconsin
- 7. Tisdale, SL; Nelson, WL and Beaton, JD. 1985. Soil Fertility and Fertilizers. 4th ed. Macmillan Publishing Company. New York (atau terbitan yang lebih baru)
- 8. Black, CA. 1993. Soil Fertility Evaluation and Control. CRC Press. Boca Raton

9.

Journal articles:

a) Selected articles (to be adapted in yearly basis)

TNH1621: Nutrient Movement in Plant-Soil System

A. Module identity

-		
1	Course Name	Nutrient Movement in Plant-Soil System
2	Course Code	TNH1621
3	Credit	2(2-0)
4	Semester	
5	Pre-requisite	
6	Coordinator	Dr. Ir. Lilik Tri Indriyati, M.Sc
7	Lecturers	Dr. Ir. Budi Nugroho, M.Si; Dr. Ir. Untung Sudadi, M.Sc.
8	Language	Indonesian Language
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-20%

B. Workloads (total contact hours and credits per semester)

Cre	edit		Contact		Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To understand and comprehend the movement of nutrients in both cation and anion forms in the soil, along with the factors that influence this movement.
- 2. To understand and comprehend the movement of nutrients from the soil to the root surface, including the factors that affect this process.
- 3. To understand and comprehend the movement of nutrients from the root or leaf surface into the plant, their internal movement within the plant, and their movement out of the plant, as well as the factors that influence these processes.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students will understand:	Lecture and Class	Written Test, Report
	Discoveries or opinions of	Discussion	
	philosophers and experts		
	from Greek and Roman		
	times to the modern era.		

	 The concept of soil systems and phases as a heterogeneous system. The relationship between the solid, liquid, and gas phases in soil. 		
2.	 Students will understand and comprehend: The theory of origin and types of soil loads. The distribution of ions in soil. The electric double layer theory and its applications. The mechanisms and characteristics of cation exchange reactions. The selectivity of cation exchange. 	Lecture and Class Discussion	Written Test, Report
3.	 Students will understand and comprehend: Anion retention. Electrostatic attraction and repulsion of anions. Anion exchange and specific and nonspecific sorption. Molecular retention. 	Lecture and Class Discussion	Written Test, Report
4.	 Students will understand and comprehend: Properties of water. Movement of water into and through the soil. Movement of water in the soil in terms of energy (water potential). Saturated and unsaturated flow. 	Lecture and Class Discussion	Written Test, Report
5.	 Students will understand: The concept of nutrient bioavailability. Mechanisms for the movement of nutrients to the root surface through diffusion and mass flow. Factors influencing diffusion and mass flow. 	Lecture and Class Discussion	Written Test, Report

	 The definition and mechanism of root interception. 		
6.	 Students will understand: The movement of nutrient ions from soil to roots. The mechanisms of macro nutrient ion movement from soil to roots for each nutrient in dry land. The mechanisms of micronutrient ion movement from soil to roots for each nutrient in dry land. Methods to increase the rate of diffusion of phosphorus (P) and potassium (K) nutrients. 	Lecture and Class Discussion	Written Test, Report
7.	 Students will understand and comprehend: Nutrient reactivity and mobility. Factors influencing the composition of the soil atmosphere. Soil aeration characteristics. The effect of aeration on the reactivity and mobility of several macro and microelements. 	Lecture and Class Discussion	Written Test, Report
8.	 Students will understand and comprehend: The relationship between stem and root. The rhizosphere. Ion concentration in the rhizosphere. pH and rhizosphere redox potential. Redox potential and the reduction process. 	Lecture and Class Discussion	Written Test, Report
9.	 Students will understand and comprehend: Rhizodeposition and root exudates. The effects of root exudates on root 	Lecture and Class Discussion	Written Test, Report

	development and nutrient		
	availability.		
	 Root exudates and their 		
	impact on plant nutrient		
	status.		
	 Ectoenzymes. 		
	Rhizosphere		
	microorganisms that do		
	not infect roots.		
10.	Students will understand:	Lecture and Class	Written Test, Report
	 The uptake and loss of 	Discussion	
	water and solutes at the		
	cellular level.		
	 Short-distance or 		
	extravascular transport of		
	water and solutes from		
	cell to cell at the tissue or		
	organ level (lateral		
	transport).		
	 Long-distance or 		
	intravascular transport of		
	water and solutes in		
	xylem vessels and		
	phloem to all parts of the		
	plant (at the whole-plant		
	level).		
11.	Students will understand and	Lecture and Class	Written Test, Report
	comprehend:	Discussion	
	Water movement		
	mechanisms: mass flow		
	and its influencing		
	factors, diffusion and its		
	Influencing factors, and		
	osmosis and its		
	Influencing factors.		
	 Water transport in plants: 		
	levels of transport, water		
	transport in roots, and the		
	transport and movement		
10	Of water in the xytern.	Lastura and Class	Writton Toot, Donort
12.	comprehend.	Discussion	
	• Stomata as absorption	DISCUSSION	
	• Storrata as absorption		
	The structure and		
	function of the cuticle		
	laver		
	 The role of stomata and 		
	ectodemata in nutrient		
	untake and transpiration		
	uptake and transpiration		

	 Factors that influence nutrient uptake through leaves The role, practical aspects, and limitations of foliar fertilization Leaching of nutrients from leaves 		
13.	 Students will understand and comprehend: The definition of mycorrhiza Basic classifications, morphology, and structure of mycorrhiza Root infection, photosynthate requirements, and host growth The role of mycorrhiza in nutrient availability 	Lecture and Class Discussion	Written Test, Report
14.	 Students will understand and comprehend: The physicochemical and biological binding of N₂ The stages of N₂ fixation in the air by N₂-fixing microbes (nodule formation, N₂-fixing mechanism) The types of airborne N₂ fixation in soil (symbiosis, association, free-living) and the factors that influence the biological N₂ fixation process 	Lecture and Class Discussion	Written Test, Report

E. Module contents

Торіс	Number of Week(s)	Contact Hours

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark
1.	Test 1 (From Dr Ir Budi Nugroho MSi)		35%
2.	Test 2 (From Dr Ir Lilik Tri Indriati MSc)		20%

3.	Test 3 (From Dr Ir Untung Sudadi)	15%
4.	Report	30%

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

- 1. Baligar, VC & RR. Duncan. 1990. Crops as Enhancers of Nutient Use. Acad. Press, Inc. Sydney.
- 2. Bohn, H, B. McNeal & G.O'Connor.1979. Soil Chemistry. John Wiley & Sons
- 3. Epstein, E & Bloom, AJ. 2005. Mineral Nutrition of Plants: Principles and Perspectives. 2nd ed. Sinauer Assoc. Inc. Pbl. Sunderland, Massachussetts. 400p.
- 4. Luttge, U & Pitman M.G. 1976. Transport in Plant II, Part B Tissues and Organs. In Encyclopedia of Plant Physiology Vol.2. Springer-Verlag, New York. 481p
- 5. Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press.
- 6. Mengel, K, Kirby, EA, Kosegarten, H. & Appel, T 2001. Principles of Plant Nutrition. Kluwer Acad. Pbl.. Bern, Switzerland.
- 7. Nye,PH & PB.Tinker.1977. Solute Movement in the soil-root system.
- 8. Tinker, PB & PH.Nye 2000. Solute Movement in the Rhizosphere

Journal articles:

a) Selected articles (to be adapted in yearly basis)

TNH1605: Precision Farming 4.0

A. Module identity

1	Course Name	Precision Farming 4.0		
2	Course Code	TNH1605		
3	Credit	2 (2-0)		
4	Semester			
5	Pre-requisite			
6	Coordinator	Dr. Ir.Dwi Putro Tejo Baskoro, M.Sc.Agr		
7	Lecturers	Dr. Ir.Dwi Putro Tejo Baskoro, M.Sc.Agr.		
		Prof. Dr. Ir.Arief Hartono, M.Sc.Agr.		
		Dr. Ir.Darmawan, M.Sc		
		Bambang Hendro Trisasongko, S.P., M.Si.,Ph.D		
8	Language	Indonesian		
9	Program(s) in which the course	Internal department: MSS		
	is offered			
10	Type of teaching	Blended system: Traditional classroom 80-100%, Online 0-		
		20%		

B. Workloads (total contact hours and credits per semester)

Cre	edit		Contact		Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To ...
- 2.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	LO in Learning Domains Teaching Strategies	

E. Module contents

Торіс		Number of Week(s)	Con	tact Hours
Introduction: understa	nding and concept of precision farming	1	2	
IPB University	Department of Soil Science and Land Resou	irce		Page 97

Soil Test	1	2
Techniques for Diagnosing Plant Nutrient Status	1	2
Fertilizer Recommendations	1	2
Location-Specific Fertilization Recommendations	1	2
Inventory of Concepts and Techniques to Support Careful Farming	1	2
Spatial Distribution of Major Land Parameters.	1	2
Mapping and Extraction of Stoic Attribute Data Using a Fuzzy	1	2
Approach		
Evaluation of Land Suitability Using Fuzzy Logic to Support	1	2
Sustainable Farming		
Micro-Spatial Distribution of Land Parameters	1	2
Principles of Agricultural Positioning Automation	1	2
Sensing and Information Extraction Technologies	1	2
Biophysical Modelling	1	2
Developing Precision Farming through Research	1	2

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a) Selected articles (to be adapted in yearly basis)

Others:

•

TNH1591: Proposal

A. Module identity

1	Course Name	Proposal
2	Course Code	TNH1591
3	Credit	
4	Semester	
5	Pre-requisite	
6	Coordinator	
7	Lecturers	
8	Language	Indonesian Language
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	-

B. Workloads (total contact hours and credits per semester)

Credit			Contact			Self-study	Other	Total
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To ...
- 2.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
А	Knowledge	1. Discourse	1. quiz scores
		2. Videos	2. Midterm scores: 10 Multiple
		3. Discussion	choice questions

E. Module contents

Торіс		Number of Week(s)	Cor	ntact Hours
IPB University Bogor Indonesia	Department of Soil Science and Land Resou	Irce		Page 99

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a)

Others:

•

TNH1592: Colloquium

A. Module identity

1	Course Name	Colloquium
2	Course Code	TNH1592
3	Credit	
4	Semester	
5	Pre-requisite	
6	Coordinator	
7	Lecturers	
8	Language	Indonesian
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Traditional classroom: 100%

B. Workloads (total contact hours and credits per semester)

Credit Contact		Self-study	Other	Total				
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To retrieve, edit, enter, and process data effectively.
- 2. To archive all relevant data.
- 3. To formulate research findings and develop them into scientific papers to be presented at seminars.
- 4. To conduct data analysis that aligns with research objectives.
- 5. To review research findings based on literature searches and compile them into structured arguments and discussions.
- 6. To formulate conclusions and recommendations from their research.
- 7. To prepare PowerPoint presentations on their research findings for seminars.
- 8. To present research findings both orally and through posters.
- 9. To respond promptly and accurately, demonstrating strong reasoning skills and discipline.
- 10. To take responsibility for their research results based on theoretical foundations and prior studies.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students will be able to review	Discussion/Consultation	Case based learning
	articles related to research.	with supervising	
		lecturers	
2.	Students will be able to disseminate	Discussion/Consultation	Colloquium article, Presentation,
	their research plan	with supervising	Question and Answer
		lecturers	

E. Module contents

Торіс	Number of Week(s)	Contact Hours
Relevant and recent proceedings/journal articles/books.	13	
1. Communication	1	
2. Presentation techniques		
3. Questions and answers		

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1. Revision Team 4th Edition. 2019. Guidelines for writing scientific papers for students' final assignments, 4th edition.4. IPB University, IPB Press.

PPS1691: Thesis Seminar

A. Module identity

1	Course Name	Thesis Seminar
2	Course Code	PPS1691
3	Credit	
4	Semester	
5	Pre-requisite	
6	Coordinator	
7	Lecturers	
8	Language	Indonesian
9	Program(s) in which the course is	Generic course offered by the Graduate School
	offered	
10	Type of teaching	Traditional classroom: 100%

B. Workloads (total contact hours and credits per semester)

Credit			Co	ntact		Self-study	Other	Total
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To retrieve, edit, enter, and process data effectively.
- 2. To archive all relevant data.
- 3. To formulate research findings and develop them into scientific papers for presentation at seminars.
- 4. To conduct data analysis that aligns with research objectives.
- 5. To review research findings based on literature searches, compiling them into structured arguments and discussions.
- 6. To formulate research conclusions and recommendations.
- 7. To prepare PowerPoint presentations on research findings for seminars.
- 8. To present research findings both orally and through posters.
- 9. To respond promptly and accurately, demonstrating strong reasoning skills and discipline.
- 10. To take responsibility for their research findings based on theoretical foundations and previous studies.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
1.	Students will be able to conduct	Discussion/Consultation	Research activities, data
	research both in the laboratory	with supervising	tabulation, data analysis
	and in the field.	lecturers	
2.	Students will be able to explain	Discussion/Consultation	Systematics of writing a thesis,
	the results of their research and	with supervising	thesis draft, presentation,
	present them in a thesis draft.	lecturers	question and answer

E. Module contents

Торіс		Number of Week(s)	Contact Hours
1.	Communication	7	
2.	Data collection techniques to presenting research		
	results		
1.	Communication	7	
2.	Research data presentation techniques		
3.	Question and answers		

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a)

Others:

•

PPS1692: Scientific Publications at National Level

A. Module identity

1	Course Name	Scientific Publications at National Level
2	Course Code	PPS1692
3	Credit	
4	Semester	
5	Pre-requisite	
6	Coordinator	
7	Lecturers	
8	Language	Indonesian Language
9	Program(s) in which the course is	Generic course offered by the Graduate School
	offered	
10	Type of teaching	-

B. Workloads (total contact hours and credits per semester)

Credit			Contact		Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To ...
- 2.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
А	Knowledge	1. Discourse	1. quiz scores
		2. Videos	2. Midterm scores: 10 Multiple
		3. Discussion	choice questions

E. Module contents

Торіс		Number of Week(s)	Contact Hours
IPB University	Department of Soil Science and Land Resou	irce	Page 105

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a)

Others:

•

PPS1698: Proceedings of International Conference

A. Module identity

1	Course Name	Proceedings of International Conference
2	Course Code	PPS1698
3	Credit	
4	Semester	
5	Pre-requisite	
6	Coordinator	
7	Lecturers	
8	Language	English
9	Program(s) in which the course is	Generic course offered by the Graduate School
	offered	
10	Type of teaching	-

B. Workloads (total contact hours and credits per semester)

Credit		Contact			Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To ...
- 2.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
А	Knowledge	1. Discourse	1. quiz scores
		2. Videos	2. Midterm scores: 10 Multiple
		3. Discussion	choice questions

E. Module contents

Торіс		Number of Week(s)	Contact Hours
IPB University	Department of Soil Science and Land Resou	rce	Page 107

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a)

Others:

PPS1695: Scientific Publications at International Level

A. Module identity

1	Course Name	Scientific Publications at International Level
2	Course Code	PPS1695
3	Credit	
4	Semester	
5	Pre-requisite	
6	Coordinator	
7	Lecturers	
8	Language	English
9	Program(s) in which the course is	Generic course offered by the Graduate School
	offered	
10	Type of teaching	-

B. Workloads (total contact hours and credits per semester)

Credit		Contact			Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To ...
- 2.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
А	Knowledge	1. Discourse	1. quiz scores
		2. Videos	2. Midterm scores: 10 Multiple
		3. Discussion	choice questions

E. Module contents

Торіс		Number of Week(s)	Conta	act Hours
IPB University	Department of Soil Science and Land Resou	irce		Page 109

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a)

Others:

TNH1691: Thesis Exam

A. Module identity

1	Course Name	Thesis Exam
2	Course Code	TNH1691
3	Credit	
4	Semester	
5	Pre-requisite	
6	Coordinator	
7	Lecturers	
8	Language	Indonesian Language
9	Program(s) in which the course is	Internal department: MSS
	offered	
10	Type of teaching	Traditional classroom: 100%

B. Workloads (total contact hours and credits per semester)

Credit		Contact			Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To ...
- 2.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
А	Knowledge	1. Discourse	1. quiz scores
		2. Videos	2. Midterm scores: 10 Multiple
		3. Discussion	choice questions

E. Module contents

Торіс		Number of Week(s)	Cor	ntact Hours
IPB University	Department of Soil Science and Land Resou	Irce		Page 111

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, Projector, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a)

Others:

TNH1692: Thesis

A. Module identity

1	Course Name	Thesis
2	Course Code	TNH1692
3	Credit	
4	Semester	
5	Pre-requisite	
6	Coordinator	
7	Lecturers	
8	Language	Indonesian Language
9	Program(s) in which the course is offered	Internal department: MSS
10	Type of teaching	a. Traditional classroom: 0%
		b. Blended system: Traditional classroom 40- 80%, Online 0-
		40%
		c. e-Learning system: 20%
		d. Others: 0%

B. Workloads (total contact hours and credits per semester)

Credit			Contact		Self-study	Other	Total	
SKS	ECTS	Lecture	Exercise	Laboratory	Practice			

*) Semester credit unit according to the Indonesian higher educational system 1 credit unit lecture = 2 hours/week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester

**) 1 hour for lecture = 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module objectives (learning outcomes, LO)

Students are able:

- 1. To ...
- 2.

D. Detailed learning outcomes in relation to learning domains, teaching strategies and assessment methods

No	LO in Learning Domains	Teaching Strategies	Assessment Methods
А	Knowledge	1. Discourse	1. quiz scores
		2. Videos	2. Midterm scores: 10 Multiple
		3. Discussion	choice questions

E. Module contents

Торіс	Number of Week(s)	Contact Hours

F. Course assessment

No	Assessment Type	Schedule (Week Due)	Proportion to the Final Mark

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media employed

Laptop, PROJECTOR, Microphone, White Board, Marker, Pointer

H. Learning resources

Textbooks:

1.

Journal articles:

a)

Others:

